• Title/Summary/Keyword: 부유 실린더

Search Result 18, Processing Time 0.023 seconds

A Study on The Behavior of Very Large Floating Structure Using Pneumatic Stabilized Platform (공기안정식 초대형부유구조물의 거동에 관한 연구)

  • Hong, Sang-Hyun;Kwon, Dong-Ho;Lee, Seung-Jun;Lee, Jong-Seh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.133-136
    • /
    • 2010
  • 공간부족과 해안 매립으로 발생되는 문제점을 해결하기 위하여 초대형부유구조물이 각광 받고 있으며, 대표적인 구조형식으로는 폰톤식과 반잠수식이 있다. 하지만 다양한 환경에 적용하기에는 구조적으로 한계를 가지고 있으며, 이를 극복하기 위해 부유체 하부에 수직으로 결합된 실린더에 공기를 가두어 지지되는 공기안정식 플랫폼이 제안되어졌으나 아직 개념단계에 머무르고 있는 실정이다. 이에 본 연구에서는 공기 안정식 초대형부유구조물의 실린더 내부 공기상태에 따른 안정성을 검토하기 위하여 유체정역학적 관계를 통해 실린더 내부의 공기 복원력 변수를 산정하였으며, 선형파랑하중에 따른 구조물의 응답을 최소화 할 수 있는 변수의 범위를 제시하였다.

  • PDF

Effects of Cylinder Rotation on Particle Laden Flow and Particle Deposition on a Rotating Circular Cylinder (실린더의 회전이 원형 실린더 주위의 입자 부유 유동 및 입자 부착에 미치는 영향)

  • Lee, Seungwoo;Kim, Dongjoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.239-248
    • /
    • 2017
  • It is important to understand the dispersion and deposition characteristics of particles in the flow around a circular cylinder. The rotation of a cylinder is considered as a means to modify the particle deposition in this study. We numerically investigate the effects of the rotational speed of a cylinder and the particle Stokes number on particle dispersion and deposition as well as flow characteristics. Results show that the deposition efficiency of small particles (with the Stokes number smaller than 4) decreases significantly as the rotational speed increases. However, when the Stokes number is larger than 4, the deposition efficiency increases slightly with the rotational speed of the cylinder. Meanwhile, for a given rotational speed, the increase in the Stokes number leads to an increase in deposition efficiency and deposited area.

A Dynamic Analysis of Tension-Legged Circular Cylinder in Irregular Waves (인장계류된 원통형 실린더의 동적 거동 해석)

  • Hwang, Jae-Hyuck;Jo, Hyo-Jae;Kwon, Kang-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.4
    • /
    • pp.259-264
    • /
    • 2002
  • The technology development for ocean resources can be represented by the increase of water depth. TLP, Tension Leg Platform, is one of the most feasible systems for deep sea development. TLPs show a complex dynamic behavior resulting from the dynamic interactions among platform, tether system and riser system due to their hydrodynamic and structural dynamic characteristics in waves. This paper aims at the theoretical and experimental analysis on motion response of TLP in waves. It is composed of two parts as follows ;(1) wave and wave loadings (2) TLP motion.

Viscous Mean Drift Forces on a Floating Vertical Cylinder in Waves and Currents (파랑과 조류에 의한 부유식 수직 실린더 구조물에 작용하는 평균 점성 표류력)

  • Shin, Dong Min;Moon, Byung Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.503-509
    • /
    • 2020
  • In offshore floating structures, the viscous mean drift force due to drag is considered a design part that has not been considered until recently. In this paper, an analytical solution for the viscous mean drift forces on a floating vertical cylinder considering the waves and currents was obtained. The area was considered by dividing it into a splash zone above the free surface and a submerged zone below the free surface. In the case of waves, only the splash zone was considered; in the case of waves and currents, equations were obtained in both the splash zone and the submerged zone. The RAO results of previous studies were used to compare the calculated results with the drift forces acting on the fixed cylinder. Except for the case in only waves in the splash zone, the viscous mean drift force acting on the floating cylinder was larger than the drift force acting on the relatively fixed cylinder in most frequencies. In particular, the increase was greater when the currents were considered to be more important. Therefore, these results provide the inference for the viscous drift force due to drag in the design of floating offshore structures.

Performance Evaluation of an Axisymmetric Floating Wave Power Device with an Oscillating Water Column in the Vertical Cylinder (진동 수주형 축대칭 부유식 파력발전장치의 성능평가)

  • Park, Woo-Sun;Jeong, Shin Taek;Choi, Hyukjin;Lee, Uk Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.1
    • /
    • pp.29-38
    • /
    • 2018
  • In order to evaluate the performance of the floating wave power, which is an axisymmetric oscillating water column type, linearized free surface boundary condition considering the influence of PTO (power takeoff) was derived and a finite element numerical model was established. Numerical experiments were carried out by varying cylinder length, skirt length, and depth of water, which are design parameters that can change the resonance of water column in cylinder and heave resonance of the float, which is considered to affect the power generation efficiency. Finally, the basic data necessary for the optimum design of the power generation system were obtained. As a result, the efficiency of the power generation system is dominated by the heave motion resonance of the float rather than the water column resonance in the cylinder, and the resonance condition for the heave motion can be changed efficiently by attaching the skirt to the outside of the buoy.

Flow Analysis around a Floating Cylinder in a Swirl Flow with a Stereoscopic-PIV (스테레오 PIV에 의한 원관내 선회유동중 실린더형 부유체 주위 유동 특성 해석)

  • Doh, D.H.;Hwang, T.G.;Tanaka, K.;Takei, M.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.319-322
    • /
    • 2006
  • The flow characteristics around a floating cylinder in a swirling flow field in a vertical pipe with a length of 600mm and an inner diameter of 100mm is investigated by the use of the Stereoscopic-PIV system. The measurement system consists of two cameras, a Nd-Yag laser and a host computer. Optical sensors(LEDs) were used to detect the location of the floating cylinder and to activate the Stereoscopic-PIV system. A conditional sampling Stereoscopic-PIV system was developed in which the flow fields around the floating cylinder are measured at the events of the activations. It has been verified that the motion of the floating cylinder becomes stable when the azimuthal velocity component of the swirl flow is maintained at stable states.

  • PDF

The Nonlinear Motions of Cylinders(II) - Translating and Heaving Problem, Body Motion in Waves - (주상체의 비선형 운동(II) -전진동요문제, 파랑중의 운동-)

  • H.Y. Lee;J.H. Hwang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.45-64
    • /
    • 1993
  • This paper dealt with the application of a numerical method developed by the authors using the matching method proposed in the previous paper on "The Nonlinear motions of cylinders(I)[16]", and Cauchy's theorem to the problems associated with hydrodynamic forces acting on a heaving cylinders translating in a calm water and also motions of cylinders in waves. In spectral method. body boundary condition in submerged case is satisfied exactly but one in floating case is not satisfied exactly. In the numerical code developed here, the boundary condition at the free-surface and body surface is satisfied exactly at its instaneous position. It is of interest to note that the present scheme could be applied to a free-surface-piercing body without experiencing a difficulty in the numerical convergence. The computed results are compared with other results([6], [12]).

  • PDF

Experiment on Sloshing of Annular Cylindrical Tank for Development of Attitude Control Devices of Floating Offshore Wind Turbines (부유식 해상풍력발전기의 자세제어장치 개발을 위한 환형 실린더 탱크의 슬로싱 실험)

  • Seo, Myeongwoo;Jeong, Weuibong;Cho, Jinrae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.25-33
    • /
    • 2013
  • The floating offshore wind turbines are usually exposed to the wave and wind excitations which are irregular and undirected. In this paper, the sloshing characteristics of annular cylindrical tank were experimentally investigated to reduce the structural dynamic motion of floating offshore wind turbine which is robust to the irregular change of excitation direction of wind and wave. The formula for the natural sloshing frequencies of this annular cylindrical tank was derived theoretically. In order to validate this formula, the shaking equipment was established and frequency response functions were measured. Two types of tank were considered. The first and second natural sloshing frequencies were investigated according to the depth of the water. It has been observed that between theoretical and experimental results shows a good agreement.

Water Wave Interactions with Array of Floating Circular Cylinders (부유식 원형 실린더 배열에 의한 파 상호작용)

  • Park, Min-Su;Jeong, Youn-Ju;You, Young-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.51-62
    • /
    • 2013
  • The water wave interactions on any three-dimensional structure of arbitrary geometry can be calculated numerically through the use of source distribution or Green's function techniques. However, such a method can be computationally expensive. In the present study, the water wave interactions in floating circular cylinder arrays were investigated numerically using the eigenfunction expansion method with the three- dimensional potential theory to reduce the computational expense. The wave excitation force, added mass coefficient, radiation damping coefficient, and wave run-up are presented with the water wave interactions in an array of 5 or 9 cylinders. The effects of the number of cylinders and the spacing between them are examined because the water wave interactions in floating circular cylinder arrays are significantly dependent upon these.

PIV Analysis on the Flows around a Cylinder under Rolling Wave (파랑상태에 있는 실린더 구조물 주위의 PIV유동 해석)

  • Jo, Hyo-Jae;Doh, Deog-Hee;Lee, Eon-Ju
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.51-58
    • /
    • 2011
  • The purpose of the study is to provide a foundation in predicting a maximum wave force when the ocean structure is laid out under breaking wave. Experiments were conducted with a down-scaled cylindrical model installed in a wave generating water channel. Maximum wave slopes were changed in regular wave condition by the wave breaker in the water channel. Cylinder's diameters were changed to 0.1m and 0.05m, respectively. Using the PIV results qualitative analyses were performed based upon the previous knowledge.