• Title/Summary/Keyword: 부유식 해양 LNG 액화플랜트

Search Result 5, Processing Time 0.019 seconds

Case Study for Development of Maintenance System for Equipment of LNG-FPSO Topside (LNG-FPSO Topside 장비를 위한 보전시스템 개발을 위한 사례 연구)

  • Lee, Soon-Sup;Kim, Jong-Wang
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.533-539
    • /
    • 2014
  • A maintenance system for an offshore plant uses an optimal maintenance method, process, and period based on operation information data and economic evaluation techniques. Maintenance is performed after one or more indicators show that equipment is going to fail or that equipment performance is deteriorating. A maintenance system is based on the use of real-time data to prioritize and optimize the LNG-FPSO topside equipment resources.

Process Simulation of the BOG Re-Liquefaction system for a Floating LNG Power Plant using Commercial Process Simulation Program (상용 공정시뮬레이션 프로그램을 이용한 부유식 LNG 발전설비의 BOG 회수시스템 공정모사)

  • Seo, Ju-Wan;Yoo, Seung-Yeol;Lee, Jae-Chul;Kim, Young-Hun;Lee, Soon-Sup
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.732-741
    • /
    • 2020
  • Environmental regulations have recently been strengthened. Consequently, floating LNG(Liquefied Natural Gas) power plants are being developed, which are new power generation plants that generate electricity by utilizing LNG. A floating LNG power plant generates BOG(Boil-Off Gas) during its operation, and the system design of such a plant should be capable of removing or re-liquefying BOG. However, the design of an offshore plant differs according to the marine requirements. Hence, a process simulation model of the BOG re-liquefaction system is needed, which can be continuously modified to avoid designing the floating LNG power plant through trial and error. In this paper, to develop a model appropriate for the floating LNG power plant, a commercial process simulation program was employed. Depending on the presence of refrigerants, various BOG re-liquefaction systems were modeled for comparing and analyzing the re-liquefaction rates and liquid points of BOG. Consequently, the BOG re-liquefaction system model incorporating nitrogen refrigerants is proposed as the re-liquefaction system model for the floating LNG power plant.

Heat Transfer Characteristics of Plate-fin Heat Exchanger Using LNG FPSO Liquefaction Process (LNG FPSO 액화공정에 적용되는 플레이트 핀 열교환기의 열전달 특성)

  • Yoo, Sun-Il;Kim, Hyun-Woo;Jung, Young-Kwon;Yoon, Jung-In;Park, Seung-Ha;Kim, Chang-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.798-805
    • /
    • 2010
  • There are no domestic researches of plate fin heat exchanger in the field of cryogenic such as LNG FPSO liquefaction plant. In this study, condensing heat transfer characteristics of nitrogen according to three kinds of fin type in the plate fin heat exchanger were analyzed through simulation and experiment to secure independent technologies. In the simulation, nitrogen was condensed at 69bar and $-140^{\circ}C$ in serrated and wavy fin of plate-fin heat exchanger. The serrated fin shows the highest value of local heat transfer coefficient, followed by wavy and plain fin. The experimental results were shown errors less than 12% comparing with the simulation results.

Development of the Pre-treatment Technology for LNG-FPSO (LNG-FPSO용 천연가스 전처리 기술 개발)

  • Jee, Hyun-Woo;Lee, Sun-Keun;Jung, Je-Ho;Min, Kwang-Joon;Kim, Mi-Jin
    • Plant Journal
    • /
    • v.9 no.3
    • /
    • pp.38-42
    • /
    • 2013
  • Submarine gas fields have focused because of the increasing fuel cost, the environmental regulations, and the safety & NIMBY problems. LNG-FPSO which is available for acid gas removal, recovery of the condensate & LPG and Liquefaction in topside process is one of high technology offshore structures. On the other hands, it is necessary to verify the pre-treatment efficiency by the ship motion and to apply to the design for LNG-FPSO. This study is to develop the pre-treatment technology for LNG-FPSO as taking account to the process efficiency by ship motion effects and the area optimization. Based on the simulation results, it founds that hybrid process shows the low circulate rate, the low heat duty and the small size of column dimensions compared to typical amine process. It will be verified the process efficiency in the various conditions by sea states as performing the 6-DOF motion test and CFD simulation.

  • PDF

A Comparative Study on Power System Harmonics for Offshore Plants (해양플랜트 전력시스템의 고조파 비교분석에 관한 연구)

  • Kim, Deok-Ki;Lee, Won-Ju;Kim, Jong-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.900-905
    • /
    • 2016
  • The field of power system harmonics has been receiving a great deal of attention recently. This is primarily due to the fact that non-linear (or harmonic-producing) loads comprise an ever-increasing portion of what is handled at a typical industrial plant. The incidence rate of harmonic-related problems is low, but awareness of harmonic issues can still help increase offshore power plant system reliability. On the rare occasion that harmonics become a problem, this is either due to the magnitude of harmonics produced or power system resonance. This harmonic study used an electrical configuration for the offloading scenario of a Floating LNG (FLNG) unit, considering power load. This electrical network configuration is visible in the electrical network load flow study part of the project. This study has been carried out to evaluate the performance of an electric power system, focusing on the harmonic efficiency of an electrically driven motor system to ensure offshore plant safety. In addition, the design part of this study analyzed the electric power system of an FLNG unit to improve the safety of operation and maintenance.