• Title/Summary/Keyword: 부유식 파력에너지 변환장치

Search Result 3, Processing Time 0.017 seconds

Numerical Analysis of Wave-induced Motion of Floating Pendulor Wave Energy Converter (부유식 진자형 파력발전 장치의 파랑운동 수치해석)

  • Nam, Bo-Woo;Hong, Sa-Young;Kim, Ki-Bum;Park, Ji-Yong;Shin, Seung-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.28-35
    • /
    • 2011
  • In this paper, the wave-induced motion characteristics of a floating pendulor are investigated numerically. A floating pendulor is a movable-body-type wave energy converter. This device consists of three main parts (floater, pendulum, and damping plates). In order to obtain the hydrodynamic coefficients and wave exciting forces acting on floating bodies, a higher-order boundary element method (HOBEM) using a wave Green function is applied to the present problems. The hinged motion of a pendulum is simulated by applying the penalty method. In order to obtain a more realistic motion response for a pendulor, numerical body damping is included. First, the wave force and motion characteristics of just a floater are observed with respect to different shape parameters. Then, a coupled analysis of a floater, pendulum, and damping plates is carried out. The relative pitch velocity and wave forces acting on the floating pendulor are compared with those of a fixed pendulor.

Study on Electrical Linear Generator Containing Heaving Buoy and Its Applications (부이 내장형 선형발전기 및 그 응용 연구)

  • Cha, Kyungho;Kim, Jung-Taek
    • New & Renewable Energy
    • /
    • v.9 no.4
    • /
    • pp.25-31
    • /
    • 2013
  • This paper describes an electrical linear generator (IntELG) based on permanent magnets, containing heaving buoy, and its applications for the floating wave energy converters riding in parallel waves. The permanent magnets are integrated with the heaving buoy as a component and the integrated component is configured within the cylindrical IntELG to be filled with fluid. Thus, the IntELG can effectively be applied for the power-take-off of the floating wave energy converter riding in parallel waves. Typical applications are exampled with the Pelamis and Anaconda and they are investigated for the diversely redundant power source of nuclear power plant and the cooperation with submerged tunnel(s).

Dynamic Response Analysis of Pneumatic Floating Breakwater Mounted Wave-power Generation System of Oscillating Water Column (진동수주형 파력발전시스템을 탑재한 공기주입식 부유식방파제의 동적거동해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.305-314
    • /
    • 2017
  • Ocean wave energy harvesting is still too expensive despite developing a variety of wave energy converter (WEC) devices. For the cost-effective wave energy harvesting, it can be an effective measure to use existing breakwaters or newly installed breakwaters for both wave control and energy harvesting purposes. In this study, we investigated the functionality of both breakwater and wave-power generator for the oscillating water column (OWC)-type wave energy converter (WEC) installed in a pneumatic floating breakwater, which was originally developed as a floating breakwater. In order to verify the performance of the breakwater as a WEC, the air flow velocity from air-chamber to WEC has to be evaluated properly. Therefore, air flow velocity, wave transformation and motion of floating structure was numerically implemented based on BEM from linear velocity potential theory without considering the compressibility of air within the chamber. Air pressure, meanwhile, was assumed to be fluctuated by the motions of structure and the water level change within air-chamber. The validity of the obtained values can be determined by comparing the previous results from the numerical analysis for different shapes. Based on numerical model results, wave transformation characteristics around OWC system mounted on the fixed and floating breakwaters, and motions of the structure with air flow velocities are investigated. In summary, all numerical results are almost identical to the previous research considering air compressibility. Therefore, it can be concluded that this analysis not considering air compressibility in the air chamber is more efficient and practical method.