• Title/Summary/Keyword: 부실예측모형

Search Result 58, Processing Time 0.031 seconds

Generation of Corporate risk Contents using Financial Data (국제경쟁력 강화를 위한 중소규모기업 부실예측 콘텐츠)

  • Kim, Young-Sook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.951-953
    • /
    • 2007
  • Generation of Corporate risk Contents using Financial Data The purpose of this paper is to capture risk profiles of smaller-sized Korean firms vis-$\grave{a}$-vis larger-sized firms during the Asian financial crisis. For this purpose, risk profiles are provided by estimating expected default risks and by tracking how these have changed during this period with respect to their magnitude, volatility, and sensitivity measures. Methodology used in this study employs the Black-Scholes-Merton model for producing estimates of default risks. And the conventional trans-log function is utilized for obtaining sensitivity measures of the estimated default risks. According to empirical evidence obtained here, it is revealed that contractions of corporate loans associated with IMF austerity policy was the main factor responsible for the drastic change in the default risk profile of Korean firms after occurrence of the Asian financial crisis.

  • PDF

A GA-based Rule Extraction for Bankruptcy Prediction Modeling (유전자 알고리즘을 활용한 부실예측모형의 구축)

  • Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.2
    • /
    • pp.83-93
    • /
    • 2001
  • Prediction of corporate failure using past financial data is well-documented topic. Early studies of bankruptcy prediction used statistical techniques such as multiple discriminant analysis, logit and probit. Recently, however, numerous studies have demonstrated that artificial intelligence such as neural networks (NNs) can be an alternative methodology for classification problems to which traditional statistical methods have long been applied. Although numerous theoretical and experimental studies reported the usefulness or neural networks in classification studies, there exists a major drawback in building and using the model. That is, the user can not readily comprehend the final rules that the neural network models acquire. We propose a genetic algorithms (GAs) approach in this study and illustrate how GAs can be applied to corporate failure prediction modeling. An advantage of GAs approach offers is that it is capable of extracting rules that are easy to understand for users like expert systems. The preliminary results show that rule extraction approach using GAs for bankruptcy prediction modeling is promising.

  • PDF

Integrated Corporate Bankruptcy Prediction Model Using Genetic Algorithms (유전자 알고리즘 기반의 기업부실예측 통합모형)

  • Ok, Joong-Kyung;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.99-121
    • /
    • 2009
  • Recently, there have been many studies that predict corporate bankruptcy using data mining techniques. Although various data mining techniques have been investigated, some researchers have tried to combine the results of each data mining technique in order to improve classification performance. In this study, we classify 4 types of data mining techniques via their characteristics and select representative techniques of each type then combine them using a genetic algorithm. The genetic algorithm may find optimal or near-optimal solution because it is a global optimization technique. This study compares the results of single models, typical combination models, and the proposed integration model using the genetic algorithm.

  • PDF

An Assets and Insolvency Prediction Framework based on Forensic Readiness using AHP and XML (AHP와 XML을 이용한 포렌식 준비도 기반의 자산 및 부실예측 프레임워크)

  • Jeong, Minseung;Kim, Jaechun;Park, Younghee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.695-698
    • /
    • 2014
  • 본 논문은 AHP의사결정 기법의 계층적 분석과 자산 및 부실채권에 대한 예측 평가르 수행하는 프레임워크를 설계하고 위험탐지 분석 시나리오 등을 통해 상황변화에 따른 모니터링에서 수집된 자료를 수집, 분석할 수 있는 포렌식 준비도 모형을 제안한다. 제안하는 시스템은 기업에서 운영하고 있는 기존의 레거시 시스템과 연계하여 자산 및 부실예측평가 항목을 다양한 속성에 따라 그룹화하고 분석을 수행함으로써 기업의 자산과 리스크를 보다 효율적이고 안정적으로 관리할 수 있으며, 부실 자산에 대한 관리와 회수를 통해 기업 경쟁력 및 수익률을 향상시킬 수 있다. 또한 포렌식 준비도와 분석 모니터링을 활용하여 민사 및 형사 소송 등의 기업 간 분쟁에 대하여 수집된 증거자료를 제공할 수 있으며, 민원발생과 기타 사고를 예방하고 처리비용을 줄일 수 있다.

Influence of Housing Market Changes on Construction Company Insolvency (주택시장 변화가 규모별 건설업체 부실화에 미치는 영향 분석)

  • Jang, Ho-Myun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3260-3269
    • /
    • 2014
  • The construction industry has strong ties with other industries, and so construction company insolvency also has a strong influence on other industries. Prediction models addressing the insolvency of construction company have been well studied. Although factors contributing to insolvency must precede those of predictions of insolvency, studies on these contributing factors are limited. The purpose of this study is to analyze the influence of changes in the housing market on construction company insolvency by using the Vector Error Correction Model. Construction companies were divided into two groups, and the expected default frequency(EDF), which indicates insolvency of each company was measured through the KMV model. The results verified that 10 largest construction companies were in a better financial condition compared to relatively smaller construction companies. As a result of conducting impulse response analysis, the EDF of large companies was found to be more sensitive to housing market change than that of small- and medium-sized construction companies.

An empirical study on a firm's fail prediction model by considering whether there are embezzlement, malpractice and the largest shareholder changes or not (횡령.배임 및 최대주주변경을 고려한 부실기업예측모형 연구)

  • Moon, Jong Geon;Hwang Bo, Yun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.9 no.1
    • /
    • pp.119-132
    • /
    • 2014
  • This study analyzed the failure prediction model of the firms listed on the KOSDAQ by considering whether there are embezzlement, malpractice and the largest shareholder changes or not. This study composed a total of 166 firms by using two-paired sampling method. For sample of failed firm, 83 manufacturing firms which delisted on KOSDAQ market for 4 years from 2009 to 2012 are selected. For sample of normal firm, 83 firms (with same item or same business as failed firm) that are listed on KOSDAQ market and perform normal business activities during the same period (from 2009 to 2012) are selected. This study selected 80 financial ratios for 5 years immediately preceding from delisting of sample firm above and conducted T-test to derive 19 of them which emerged for five consecutive years among significant variables and used forward selection to estimate logistic regression model. While the precedent studies only analyzed the data of three years immediately preceding the delisting, this study analyzes data of five years immediately preceding the delisting. This study is distinct from existing previous studies that it researches which significant financial characteristic influences the insolvency from the initial phase of insolvent firm with time lag and it also empirically analyzes the usefulness of data by building a firm's fail prediction model which considered embezzlement/malpractice and the largest shareholder changes as dummy variable(non-financial characteristics). The accuracy of classification of the prediction model with dummy variable appeared 95.2% in year T-1, 88.0% in year T-2, 81.3% in year T-3, 79.5% in year T-4, and 74.7% in year T-5. It increased as year of delisting approaches and showed generally higher the accuracy of classification than the results of existing previous studies. This study expects to reduce the damage of not only the firm but also investors, financial institutions and other stakeholders by finding the firm with high potential to fail in advance.

  • PDF

머신러닝 기반 KOSDAQ 시장의 관리종목 지정 예측 연구

  • Yun, Yang-Hyeon;Kim, Tae-Gyeong;Kim, Su-Yeong;Park, Yong-Gyun
    • 한국벤처창업학회:학술대회논문집
    • /
    • 2021.11a
    • /
    • pp.185-187
    • /
    • 2021
  • 관리종목 지정 제도는 상장 기업 내 기업의 부실화를 경고하여 기업에게는 회생 기회를 주고, 투자자들에게는 투자 위험을 경고하기 위한 시장규제 제도이다. 본 연구는 관리종목과 비관리종목의 기업의 재무 데이터를 표본으로 하여 관리종목 지정 예측에 대한 연구를 진행하였다. 분석에 쓰인 분석 방법은 로지스틱 회귀분석, 의사결정나무, 서포트 벡터 머신, 소프트 보팅, 랜덤 포레스트, LightGBM이며 분류 정확도가 82.73%인 LightGBM이 가장 우수한 예측 모형이었으며 분류 정확도가 가장 낮은 예측 모형은 정확도가 71.94%인 의사결정나무였다. 대체적으로 앙상블을 이용한 학습 모형이 단일 학습 모형보다 예측 성능이 높았다.

  • PDF

A Study on the Optimal Discriminant Model Predicting the likelihood of Insolvency for Technology Financing (기술금융을 위한 부실 가능성 예측 최적 판별모형에 대한 연구)

  • Sung, Oong-Hyun
    • Journal of Korea Technology Innovation Society
    • /
    • v.10 no.2
    • /
    • pp.183-205
    • /
    • 2007
  • An investigation was undertaken of the optimal discriminant model for predicting the likelihood of insolvency in advance for medium-sized firms based on the technology evaluation. The explanatory variables included in the discriminant model were selected by both factor analysis and discriminant analysis using stepwise selection method. Five explanatory variables were selected in factor analysis in terms of explanatory ratio and communality. Six explanatory variables were selected in stepwise discriminant analysis. The effectiveness of linear discriminant model and logistic discriminant model were assessed by the criteria of the critical probability and correct classification rate. Result showed that both model had similar correct classification rate and the linear discriminant model was preferred to the logistic discriminant model in terms of criteria of the critical probability In case of the linear discriminant model with critical probability of 0.5, the total-group correct classification rate was 70.4% and correct classification rates of insolvent and solvent groups were 73.4% and 69.5% respectively. Correct classification rate is an estimate of the probability that the estimated discriminant function will correctly classify the present sample. However, the actual correct classification rate is an estimate of the probability that the estimated discriminant function will correctly classify a future observation. Unfortunately, the correct classification rate underestimates the actual correct classification rate because the data set used to estimate the discriminant function is also used to evaluate them. The cross-validation method were used to estimate the bias of the correct classification rate. According to the results the estimated bias were 2.9% and the predicted actual correct classification rate was 67.5%. And a threshold value is set to establish an in-doubt category. Results of linear discriminant model can be applied for the technology financing banks to evaluate the possibility of insolvency and give the ranking of the firms applied.

  • PDF

Corporate Bankruptcy Prediction Model using Explainable AI-based Feature Selection (설명가능 AI 기반의 변수선정을 이용한 기업부실예측모형)

  • Gundoo Moon;Kyoung-jae Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.241-265
    • /
    • 2023
  • A corporate insolvency prediction model serves as a vital tool for objectively monitoring the financial condition of companies. It enables timely warnings, facilitates responsive actions, and supports the formulation of effective management strategies to mitigate bankruptcy risks and enhance performance. Investors and financial institutions utilize default prediction models to minimize financial losses. As the interest in utilizing artificial intelligence (AI) technology for corporate insolvency prediction grows, extensive research has been conducted in this domain. However, there is an increasing demand for explainable AI models in corporate insolvency prediction, emphasizing interpretability and reliability. The SHAP (SHapley Additive exPlanations) technique has gained significant popularity and has demonstrated strong performance in various applications. Nonetheless, it has limitations such as computational cost, processing time, and scalability concerns based on the number of variables. This study introduces a novel approach to variable selection that reduces the number of variables by averaging SHAP values from bootstrapped data subsets instead of using the entire dataset. This technique aims to improve computational efficiency while maintaining excellent predictive performance. To obtain classification results, we aim to train random forest, XGBoost, and C5.0 models using carefully selected variables with high interpretability. The classification accuracy of the ensemble model, generated through soft voting as the goal of high-performance model design, is compared with the individual models. The study leverages data from 1,698 Korean light industrial companies and employs bootstrapping to create distinct data groups. Logistic Regression is employed to calculate SHAP values for each data group, and their averages are computed to derive the final SHAP values. The proposed model enhances interpretability and aims to achieve superior predictive performance.