• Title/Summary/Keyword: 부식평가

Search Result 1,177, Processing Time 0.026 seconds

Ca과 Y이 복합 첨가된 다이캐스트 AZ91D 마그네슘합금의 부식 거동 및 표면 피막 분석

  • U, Sang-Gyu;Seo, Byeong-Chan;Blawer, C.;Kim, Yeong-Min;Yu, Bong-Seon;Im, Chang-Dong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.26.2-26.2
    • /
    • 2018
  • 최근 연구결과에 따르면, 상용 AZ91D 마그네슘합금에 Ca과 Y을 복합 첨가함으로써 마그네슘합금의 문제점인 발화저항성을 크게 향상시키는 동시에 충분한 기계적 특성을 확보할 수 있어 마그네슘합금의 적용분야 확대에 대한 기대가 높아지고 있다. 한편 Ca과 Y을 복합 첨가된 마그네슘합금은 기존의 상용합금에 비해서 매우 우수한 내식성을 나타내는 것으로 알려져 마그네슘합금의 또 하나의 장애물로 여겨졌던 부식 문제 또한 해결할 수 있을 것으로 기대되고 있다. 선행연구결과, 이러한 내식성의 향상은 Ca과 Y의 첨가에 따라 이차상의 조성이 변하게 되면서 상과 기지간의 부식 전위의 차이가 감소하고, 이로 인해 미세 갈바닉 부식 발생이 감소하게 되었기 때문으로 판단된다. 본 연구에서는 이러한 Ca 과 Y의 첨가가 이차상의 부식 전위 뿐 만 아니라 AZ91D 합금의 표면 특성을 어떻게 변화시키고 이러한 특성의 변화가 내식성에 어떠한 영향을 미치는 지에 대하여 평가하였다. 다양한 전기화학적 분석을 통해 각 합금의 표면 특성과 내식성을 평가하였고, 표면 산화층 분석 및 TEM 분석 등을 통해 표면 피막의 구조와 조성을 분석하여 차이를 비교하였다.

  • PDF

Experimental Study on the Corrosion Characteristics of Zn and Zn-15Al Coatings Deposited by Plasma Arc Thermal Spray Process in Saline Solution (플라즈마 아크 용사 공법에 의해 도포된 Zn 및 Zn-15Al 금속 코팅의 해수 환경에서 부식 특성에 관한 실험적 연구)

  • Jeong, Hwa-Rang;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.539-550
    • /
    • 2021
  • In this study, Zn and Zn-15Al were coated on general carbon steel by plasma arc metal spraying and then immersed in a 3.5wt.% NaCl solution similar to the seawater environment to evaluate the corrosion resistance properties. Through the surface shape analysis test by SEM and XRD, it was found that the Zn coating was porous and needle-shaped, so the penetration of the electrolyte was easy, and thus the corrosion rate was rapid. On the other hand, the Zn-15Al coating had a uniform and dense shape and was shown to suppress corrosion.

Estimation of Critical Chloride Content for Corrosion of Reinforcing Steel in Concrete by Field Exposure Experiment (현장 폭로실험에 의한 콘크리트 중 철근의 부식 임계 염화물량 평가)

  • Yu, Kyung-Geun;Bae, Su-Ho;Park, Jae-Im;Lee, Kwang-Myong;Kim, Jee-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.585-588
    • /
    • 2008
  • To predict the service life of reinforced concrete structures exposed to chloride environment, quantitative measures of material properties such as the critical chloride content for corrosion in concrete and the diffusion coefficient of chloride ions of concrete and the surface chloride content of the concrete are essential. However, it should be noted that they are influenced by several factors such as concrete mix proportions, cement type, and environmental conditions, etc. Thus, the purpose of this research is to estimate more actually the critical chloride content for corrosion of the reinforcing steel in concrete by field exposure experiment. For this purpose, the prism concrete test specimens were made for water-cement(W/C) ratios of 31%, 42%, 50%, and 70%, and then the field exposure experiment for them were conducted at Youngduk of the east coast for about 3 years. During the test, corrosion monitoring by half cell potential method was carried out to detect the time to initiation of corrosion for test specimens and its chloride content was evaluated by breaking the concrete test specimens when corrosion of the reinforcing steel in concrete was perceived. It was observed from the test results that the critical chloride content for corrosion of reinforcing steel in concrete would be dependent on W/C ratio and almost irrespective of concrete cover.

  • PDF

Corrosion-Resisting Performance Evaluation of Concrete Mixed with Fly-Ash (플라이애시 혼합 콘크리트의 철근 부식 저항성능 평가)

  • Park, Sang-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.117-125
    • /
    • 2017
  • The role of fly ash in concrete become impotent with finding the characteristics of fly ash in which it is used as cement replacement material. In this paper, corrosion test results obtained by two test methods such as the long-term exposure corrosion test and the accelerated corrosion test method, were compared to investigated the corrosion resistance between fly ash concrete and normal concrete. Corrosion initiation time was measured in two types of concrete, i.e., one mixed with fly ash(FA) and the other without admixture(OPC). The accelerated corrosion test was carried out by four case, i.e., two samples is a cyclic drying-wetting method combined without carbonation(case 1) and combined with carbonation(case 2), and the other two samples is a artificial seawater ponding test method combined without carbonation(case 3) and combined with carbonation(case 4). Whether corrosion occurs, it was measures using half-cell potential method. The ponding test combined without carbonation was most effective in accelerating corrosion time of steel bars. The results indicated that the corrosion of rebar embedded in concrete occurred according to the order of OPC, FA. The delay relative ratio of corrosion obtained by corrosion initiation time between FA and OPC is 1.04 to 1.27. Consequently, fly ash concrete as the age increases its corrosion resistance was improved compared with OPC concrete.

Corrosion Behavior and Ultrasonic Velocity in RC Beams with Various Cover Depth (다양한 피복두께를 가진 RC 보의 부식 거동 및 초음파 속도)

  • Jin-Won Nam;Hyun-Min Yang;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.184-191
    • /
    • 2023
  • With increasing corrosion in RC (Reinforced Concrete) structures, cracks occurred due to corrosion products and bearing load resistance decreased. In this study, corrosion was induced through an accelerated corrosion test (ICM: Impressed Current Method) with 140 hours of duration, and changes in USV (Ultra-Sonic Velocity), flexural failure load, and corrosion weight were evaluated before and after corrosion test. Three levels of cover depth (20 mm, 30 mm, and 40 mm) were considered, and the initial cracking period increased and the rust around steel decreased with increasing cover depth. In addition, the USV linearly decreased with decreasing cover depth and increasing amount of corrosion. In the flexural loading test, the bending capacity decreased by more than 10% due to corrosion, but a clear correlation could not be obtained since the corrosion ratio was small, so that the effect of slip was greater than that of reduced cross-sectional area of steel due to corrosion. As cover depth increased, the produced corrosion amount and USV changed with a clear linear relationship, and the cracking period due to corrosion could be estimated by the gradient of the measured corrosion current.

전류인가형 부식 장치 개발

  • 임승수;김경진;정재필
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.22-22
    • /
    • 2002
  • 본 연구에서는 교량, 발전소, 산엽체의 시설물 둥 대형 옥외 설치 구조물의 부식방지를 위해, 전류 인가형 부식 방지 장치를 개발하였다. 기존의 전극기판(anode base)은 pve로 만들 어져 있어서, 옥외에 설치된 상태에서 쉽게 열화되어 부스러지며, 비 갠 후 시설물의 일부에 물기가 남아 있는 부식 환경하에서도 플라스틱 기판은 물기가 쉽게 제거되어 이마 건조된 상태가 된다. 이 경우에는 기판을 통해 부식방지 전류를 흐르게 할 수가 없기 때문에 희생 양극의 임무를 수행할 수가 없으며, 시설물이 부식되는 단점이 있다. 본 연구에서 개발한 흡습성 기판은 기존의 pve 기판의 단점을 개선한 것으로, 대기 중에 방치해도 수명이 영구적이며, 다공질이기 때문에 흡습성이 있어서 비 캔 후에도 기판 내부와 표면에 물기가 남아 었다. 따라서, 비 캔 후 부식환경에서도 부식 방지 전류를 흐르게 할 수가 있어서 희생양극의 업무를 수행할 수 있다. 본 연구에서는 옥외 구조물에 대한 방식 특성을 평가하기 위하여, 세라믹 기판을 부착하고 전류 측정을 하기 위한 철판(보통탄소강)구조물을 아래와 같이 제작하였다. 구조물의 $가로{\times}세로$ 크기는 $450mm{\times}450mm$ 이며, 구조물의 중앙에 세라믹 또는 pve Anode 기판을 부착 하였다. 살수 후 전류의 측정 위치는 구조물의 Anode 기판 중심에서 100mm 떨어진 지점 4 곳에 부착하였다. 본 연구에서 개발한 세라믹 가판의 경우와 기존의 pve 기판의 경우를 비 교 실험한 결과, 전자의 경우는 120분 경과 후에도 $70~80\mu\textrm{A}$의 많은 양의 전류가 흐르는 것으로 밝혀졌으며, 후자의 경우는 120분이 지난 후에는 전류가 전혀 흐르지 않는 것올 알 수 있다. 따라서, 기존의 pve 보다 세라믹 기판의 경우가 수분 흡수율이 높아 더 오랫동안 전류를 흐르게 하여 방식성이 개선된 것으로 판단된다.

  • PDF

The Development and its Application of Diagnostic Technique for Corrosion Defect of U-type Open Rack Vaporizer (개방형 U-type 기화기의 부식손상부 진단기법 개발 및 적용)

  • Jang S. Y.;Lee S. M.;Oh B. T.;Kho Y. T.
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.3 s.15
    • /
    • pp.45-50
    • /
    • 2001
  • Open rack vaporizer (ORV) has been used in liquefied natural gas (LNG) receiving terminal in order to vaporize LNG into natural gas (NG) by heat exchange with seawater The U-type ORV which had been operated with seawater for 14 years is one of the important utilities of the gas production and the weld part of tube connected with header_ pipe had experienced many corrosion problems. To elucidate the cause of corrosion at weld part of vaporizer tube, corrosion potentials were compared by parts. This study concerns on the measurement of corrosion pit depth using non-destructive method and the evaluation of stress distribution in an aspect of safety with finite element analysis. In order to confirm the reliability of galvanic corrosion between weld parts and base metal, the measurement of corrosion potential by parts was conducted for 20 minutes in 3.5$\%$(wt.) NaCl solution. Many non-destructive methods were tried to measure the remaining thickness of vaporizer tube at fields. For general corrosion, tangential radiography test was confirmed as an effective method. In case of a fine corrosion pit, the shape of corrosion pit was reproduced using surface replication method. From collected data, stress distributions were quantitatively evaluated with 2-dimensional finite element method and the diagnostic evaluation on internal pressure of the U-type vaporizer could be made.

  • PDF

A Study on the Application of FRP Hybrid Bar to Prevent Corrosion of Reinforcing Bar in Concrete Structure (콘크리트구조물 중의 철근 부식 저감을 위한 FRP Hybrid Bar의 적용성 연구)

  • Lee, Seung-Tae;Park, Kwang-Pil;Park, Ki-Tae;You, Young-Jun;Seo, Dong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.559-568
    • /
    • 2019
  • Recently, the infrastructure of the marine environment has been increasing. Therefore, there has been increasing interest in increasing the durability of structures. The FRP Hybrid Bar with improved durability against corrosion was developed in recent years. On the other hand, studies that evaluate the corrosion resistance are insufficient. In this study, the corrosion resistance according to the type of rebar in concrete was assessed and analyzed. The experiment used steel bars and FRP Hybrid Bar. The corrosion test method was a galvanic current and half-cell potential method. The accelerated corrosion test was carried out by four levels (0%, 1.5%, 3%, and 6%) of chloride added to the concrete. The galvanic current measurements revealed no corrosion current in the FRP Hybrid Bar. The half-cell measurement also showed the corrosion resistance of the FRP Hybrid Bar. Therefore. FHB can be used as an alternative steel for structures where a marine environment and steel corrosion are predicted.

Experimentally Evaluating Fatigue Behavior of Corroded Steels Exposed in Atmospheric Environments (대기환경하에서 장기간 사용된 부식강재의 실험적 피로거동평가)

  • Mun, Jae Min;Jeong, Young Soo;Jeon, Je Hyeong;Ahn, Jin Hee;Kim, In Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.193-204
    • /
    • 2017
  • Fatigue strength of temporary steels and painted structural steels corroded under outdoor atmospheric environments is not clear. In this study, fatigue tests were carried out on steel plates which were cut off from 7-year-old temporary structural member under subway construction environment and from 75-year-old Yeongdo bridge member under marine atmospheric environment. After removing corrosion production on the steel surface, 3-dimensional surface geometry of the corroded steel was measured at intervals of $1.0{\times}1.0mm$, and corrosion characteristics such as minimum, maximum and mean values of residual thicknesses were calculated. From the fatigue test and FEM analysis results, the relationship between corrosion characteristics and fatigue behavior was presented, and change in fatigue strength of the unpainted and painted steels corroded in outdoor environments was also presented.

A Preliminary Study on the Reused Channel-Type Lining Board with Corrosion-Damage (부식 강재 복공판의 재사용성 평가에 관한 기초적 연구)

  • Kim, In-Tae;Kim, Dong-Woo;Choi, Hyoung-Suk;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.4 s.56
    • /
    • pp.170-179
    • /
    • 2009
  • Channel-type lining board(CLB) is a welded steel structure used in the field of open cut subway excavation and building basement construction. Lining board is generally installed at the underground environment which is exposed to corrosion factors such as humidity, temperature and corrosive gases. This study evaluates reusability of the corroded lining board by experimental and analytical method. Static loading tests were performed to know serviceability of corroded CLB after checking thickness loss of the used CLB parts. Strain of the plates and middle point deflection was measured simultaneously. According to experimental test results and comparison with numerical analysis, the thickness loss of the plates by corrosion makes more vertical displacements and stresses in members under the DB vehicle load considering impact factor. As a result, this paper is proposed a way to evaluate used and corroded CLB by checking the plates thickness and it makes construction engineers easy to know optimal time to replace their old CLBs with new one.