• 제목/요약/키워드: 부분특징

검색결과 2,329건 처리시간 0.031초

동시 발생 빈발 부분그래프를 이용한 그래프 분류 (Graph Classification using Co-occurrent Frequent Subgraphs)

  • 박기성;한용구;이영구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.109-111
    • /
    • 2011
  • 대부분의 빈발 부분그래프를 이용한 그래프 분류 알고리즘들은 빈발 부분그래프를 마이닝하여 개별적인 빈발 부분그래프의 포함 여부를 특징 벡터로 구성하는 단계와 기계학습 알고리즘들을 훈련시켜 분류 모델을 수립하는 단계로 구성된다. 이와 같은 그래프 분류 알고리즘들은 부분그래프의 개별적인 존재 여부만을 이용하여 특징을 구성하기 때문에 변별력이 떨어지는 문제점이 있다. 본 논문에서는 빈발 부분그래프들이 동시 발생하는 특징 벡터의 변별력을 반영할 수 있는 특징선택 기법을 적용한 모델 기반 탐색트리 기법을 제안한다. 동시 발생 부분그래프를 특징으로 사용하여 변별력을 향상시킬 수 있으며, 모델기반 탐색 트리를 사용하여 제안하는 기법이 기존의 방법보다 더 높은 그래프 분류 성능을 보이는 것을 입증하였다.

유전적 특징선택에 관한 연구 (A Study on Genetic Feature Selection)

  • 한명묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.292-293
    • /
    • 2008
  • 많은 분야에서 최적의 기준을 바탕으로 특징들의 부분집합을 선택하는 문제들이 핵심 요소로 작용하고 있다. 다양한 특징들의 부분집합 중에서 가능한 한 가장 성능이 우수한 특징들의 부분집합을 선택하기 위해서는 특징선택 방법이 알고리즘과 적용분야들을 고려해야한다. 이 논문에서는 특징선택을 위해서 서로 다른 두 종류의 최적화 문제를 탐색하는 방법을 제안하고, 그 결과를 실험으로 보여준다.

  • PDF

데이터 표현 강조 기법을 활용한 부분 공간 군집화 (Deep Subspace clustering with attention mechanism)

  • 백상원;윤상민
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.721-723
    • /
    • 2020
  • 부분 공간 군집화는 고차원 데이터에서 의미 있는 특징들을 선별 및 추출하여 저차원의 부분 공간에서 군집화 하는 것이다. 그러나 최근 딥러닝 활용한 부분 공간 군집화 연구들은 AutoEncoder을 기반으로 의미있는 특징을 선별하는 것이 아닌 특징 맵의 크기를 증가시켜서 네트워크의 표현 능력에 중점을 둔 연구되고 있다. 본 논문에서는 AutoEncdoer 네트워크에 Channel Attention 모델을 활용하여 Encoder와 Decoder에서 부분 공간 군집화를 위한 특징을 강조하는 네트워크를 제안한다. 본 논문에서 제안하는 네트워크는 고차원의 이미지에서 부분 공간 군집화를 위해 강조된 특징 맵을 추출하고 이를 이용해서 보다 향상된 성능을 보여주었다.

  • PDF

공기 중 부분방전원 식별를 위한 UWB신호파형의 특징추출 (Feature extraction of waveforms for discrimination of PD sources in air)

  • 이강원;박성희;김길수;강성화;임기조
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.203-205
    • /
    • 2002
  • 기존 부분방전검출법에서는 수십$\sim$수백MHz의 주파수 영역에서 부분방전신호를 관찰하였기 때문에 각 부분방전원별 발생신호파형의 특징을 효율적으로 추출할 수 없었다. 본 논문에서는 수십$\sim$수백MHz의 넓은 주파수대역(UWB)에서 부분방전신호를 관찰하여 각 부분방전원별 신호파형의 특징을 추출한 후 이러한 특징을 토대로 부분방전원을 구별하였으며, 상당히 좋은 분류결과를 보였다.

  • PDF

부분 최소제곱법 기반한 차원 축소 특징을 이용한 얼굴 인식 (Face Recognition using Dimension Reduction Features based on Partial Least Squares)

  • 이창범;김도향;박혁로;백장선
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.745-748
    • /
    • 2004
  • 얼굴 이미지의 대부분은 표본의 수보다 특징 변수의 수가 많기 때문에 이러한 점을 고려한 특징 추출 방법이 필요하다. 본 논문에서는 부분 최소제곱법을 이용하여 특징 벡터의 차원을 축소하는 방법을 제안한다. 전통적인 차원 축소 방법인 주성분 분석은 클래스의 정보를 고려하지 않고 최대 변이를 가지는 성분을 추출하기 때문에, 클래스의 구분에 필요한 특징을 필수적으로 추출하지 못한다. 이에 비해, 부분 최소제곱법은 클래스 변수에 대한 정보를 포함하여 성분을 추출한다. 그러므로, 분류를 하는데 있어서는 주성분 분석에 의해 추출된 성분보다는 부분 최소제곱법에 의해 추출된 성분이 보다 더 예측적이다. 맨체스터와 ORL 얼굴 데이터베이스를 이용하여 실험한 결과, 분류와 차원 축소 측면에서 주성분 분석 방법보다는 부분 최소제곱법을 이용한 방법이 그 성능이 우수함을 알 수 있었다.

  • PDF

부분 얼굴 특징 추출에 기반한 신원 확인 시스템 (Identification System Based on Partial Face Feature Extraction)

  • 최선형;조성원;정선태
    • 한국지능시스템학회논문지
    • /
    • 제22권2호
    • /
    • pp.168-173
    • /
    • 2012
  • 본 논문은 얼굴인식 시스템 상에서 마스크를 착용한 변장이미지가 입력 감지될 경우 나머지 노출된 부분의 특징만을 가지고 가려진 사람의 신원을 추정하는 방법을 기술한다. 얼굴영역 검출 후에 마스크상단의 눈 주변 이미지만을 가지고 특징점 추출을 실시하여 등록된 얼굴 인증 데이터 베이스와의 특징점 비교를 통해 사람의 신원을 추정한다. 매칭에 쓰일 특징점 추출에는 조명에 강인하고 영상의 크기와 회전에도 변하지 않는 특성을 가진 SIFT(Scale Invariant Feature Transform) 알고리즘을 이용한다. 특징점 매칭을 통해 정확한 매칭률은 전체 실험결과를 통해 평가한다.

웨이블릿 변환을 이용한 적응적 뇌영상 검색 방안 (Adaptative Retrieval Method for Brain Image using Wavelet)

  • 구혜영;엄기현
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 추계학술발표논문집
    • /
    • pp.447-452
    • /
    • 2001
  • 내용 기반 이미지 검색에서 질감정보는 이미지의 검색 속성으로 사용할 수 있는 중요한 정보를 가지고 있다. 본 논문에서는 검색의 이미지 속성으로서 질감 특징을 사용한다. 의료영상 MRI 중 특히 뇌영상의 검색에서 질감의 특징은 전체 이미지를 대상으로 한 전역 질감 특징 값과 종양이나 뇌출혈 부분 등 정상이 아닌 이상객체 부분의 지역 질감 특징 값을 3단계 웨이블릿 변환을 통해 추출하고 추출된 여러 개의 특징 중 검색 효율성을 높일 수 있는 특징만을 선별하여 검색에 이용하는 방안을 제안한다.

  • PDF

오디오 멜로디 추출 기반 특징 분석을 이용한 음악검색 방법에 관한 연구 (A Study on Music Retrieval method based on Audio Contents Feature Analysis)

  • 송재종;이석필
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.441-443
    • /
    • 2011
  • 본 논문은 오디오 특징 분석을 기반으로 한 음악검색 방법에 대한 기술과 연구에 대한 내용이다. 본 연구에서는 크게 3가지의 주요 알고리즘을 이용하여 다 성음에서의 오디오 특징을 추출하고 3가지의 각자 다른 방식의 매칭 알고리즘을 기반으로 한 퓨전 매칭 방식을 제안한다. 오디오 특징으로는 메인 멜로디, 음악 구조를 분석한 세그먼테이션 정보를 이용한다. 본 연구에서 사용된 음악 DB는 음악 포털 서비스에서 제공하는 장르를 기반으로 한 8가지 장르에서 다양한 범위에서 2000곡을 선곡하였다. 오디오 특징 추출을 위한 알고리즘 개발과 매칭 알고리즘 개발을 위하여 음악 DB 2000곡 중 장르의 비율을 고려하여 100곡을 선정하고, 24명으로부터 1200개의 허밍을 녹음하였다. 24명중 3명은 대학에서 음악을 전공하고 나머지는 음악적 교육을 받은 경험이 없는 사람들이다. 1200개의 허밍을 분석한 결과 전체 허밍 중 60%정도가 노래의 시작 부분을 허밍하거나 노래를 불렀고, 30%정도는 하이라이트 부분을 허밍 하였다. 나머지 10%정도는 자신이 가장 자신 있는 부분을 불렀다. 이러한 분석 결과를 기반으로 가장 중요한 부분은 노래가 시작되는 부분에서의 멜로디를 정확하게 찾아내는 것이 무엇보다 중요하다는 것이다. 본 연구에서 검색결과의 평가는 MRR를 이용하여 측정하였다. MIDI DB를 사용한 경우가 다 성음에서 직접 멜로디를 추출한 경우보다 약간 성능이 우수하게 나왔으나 그 차이는 미미했다. 본 연구에서는 개발된 알고리즘을 이용하여 PC상에서 사용할 수 있는 클라이언트 프로그램과 Android app를 개발하였다.

SIFT와 부분공간분석법을 활용한 얼굴인식 (Face Recognition using SIFT and Subspace Analysis)

  • 김동현;박혜영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.390-394
    • /
    • 2010
  • 본 논문에서는 영상인식에서 널리 사용되는 지역적 특징인 SIFT와 부분공간분석에 의한 차원축소방법의 결합을 통하여 얼굴을 인식하는 방법을 제안한다. 기존의 SIFT기반 영상인식 방법에서는 추출된 키 포인트 각각에 대하여 계산된 특징기술자들을 개별적으로 비교하여 얻어지는 유사도를 바탕으로 인식을 수행하는데 반해, 본 논문에서 제안하는 접근법은 SIFT의 특징기술자를 명도 값으로 표현된 얼굴 영상을 여려 변형에 강건한 형태로 표현되도록 변환하는 표현방식으로 본다. SIFT기반의 특징기술자에 의해 표현된 얼굴 영상을 부분공간분석법에 의해 저차원의 특징벡터로 다시 표현되고, 이 특징벡터를 이용하여 얼굴인식을 수행한다. 잘 알려진 벤치마크 데이터인 AR 데이터베이스에 대한 실험을 통해 제안한 방법이 조명 변화와 가려짐에 강인한 인식 결과를 보여줄 뿐 아니라, 기존의 SIFT 기반의 얼굴 인식 방법에 비하여 우수한 처리 속도를 보임을 확인하였다.

  • PDF

신호처리 기술에 의한 부분방전 방사전자파의 특징 추출 (The Feature Extraction of Partial Discharge Electromagnetic Wave utilizing Signal Processing Techniques)

  • 이현동;이광식
    • 조명전기설비학회논문지
    • /
    • 제16권1호
    • /
    • pp.44-49
    • /
    • 2002
  • 최근 고전압 전력기기에서의 부분방전을 측정하기 위한 다양한 절연진단 기술들이 소개되었다. 부분방전 신호는 아주 미약하고 주변환경의 여러잡음에 쉽게 영향을 받으므로 주위 노이즈와의 구별이 어려운 실정이다. 본 논문에서는 부분방전 검출법중 부분방전에 의해 방사되는 전자파를 안테나로 측정하는 방사전자파법을 이용하여 변전소 구내의 배경잡음과 실험실내의 모의 부분방전을 방사전자파법에 의해 측정분석하였다. 또한 간섭신호와 모의 부분방전시 방사되는 방사전자파의 특징을 추출하고, 그 인식을 위하여 웨이브렛 패킷 변환을 이용하였다. 그 결과 간섭신호와 부분방전의 특정주파수대역의 시간정보 특징으로 그 차이를 구별할 수 있었다.