• Title/Summary/Keyword: 부밍 인덱스

Search Result 2, Processing Time 0.015 seconds

Booming Index Development of Interior Sound Quality on a Passenger Car Using Artificial Neural Network (신경망회로를 이용한 부밍음질의 인덱스 개발에 관한 연구)

  • 이상권;채희창;박동철;정승균
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.445-451
    • /
    • 2003
  • Booming sound is one of the most important interior sound of a passenger car. The conventional booming noise research was focused on the reduction of the A-weighted sound pressure level. However A-weighted sound pressure level cannot give the whole story about the booming sound of a passenger car. In this paper, we employed sound metrics, which are the subjective parameters, used in psycoacoustics. According to recent research results. the relation between sound metrics and subjective evaluation is very complex and has nonlinear characteristics. In order to estimate this nonlinear relationship, artificial neural network theory has been applied to derivation of sound quality index for booming sound of a passenger car.

New Development of Two-dimensional Sound Quality Index for Brand Sound in Passenger Cars (승용차 브랜드 사운드를 위한 이차원 음질 인덱스 개발)

  • Jo, Byoung-Ok;Park, Dong-Chul;Lee, Min-Sub;Jung, Seung-Gyoon;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.457-469
    • /
    • 2006
  • In automotive engineering, the brand sound is one of the important advantage strategies in a car company. For the design of brand sound, the selection of descriptive word for a car sound is one of major works in automotive sound quality research. In this paper, booming and rumbling sound, which are professional words used by sound and vibration engineers are used for the design of brand sound. We employed sound quality metrics, which are used in the psychoacoustics. By most research results, the relationship between subjective evaluations and sound quality metrics has nonlinear characteristics. In order to correlate these subjective evaluations with sound quality metrics, the artificial neural network technology has been applied to two-dimensional sound quality index for a passenger car. These indexes are used for 46 passenger cars, which are samples of the famous cars around the world. Also a preference evaluation for car sound was carried out by sound and vibration engineers. We coupled this preference with booming and rumbling sounds by using artificial neural network. In future, the two dimensional sound and preference index will be very useful to develop brand sound in passenger cars.