• Title/Summary/Keyword: 부등축소

Search Result 41, Processing Time 0.024 seconds

Probabilistic Prediction and Field Measurement of Column Shortening for Tall Building with Bearing Wall System (초고층 내력벽식 구조물의 기둥축소량에 대한 확률론적 예측 및 현장계측)

  • Song, Hwa-Cheol;Yoon, Kwang-Sup
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.101-108
    • /
    • 2006
  • Accurate prediction of time-dependent column shortening is essential for tall buildings in both strength and serviceability aspects. The uncertainty associated with assumed values for concrete properties such as strength, creep, and shrinkage coefficients should be considered for the prediction of time-dependent column shortening of tall concrete buildings. In this study, the column shortenings of 41-story tall concrete building are predicted using monte carlo simulation technique based on the probabilistic analysis. The probabilistic column shortenings considering confidence intervals are compared with the actual column shortenings by field measurement. The time-dependent strains measured at tall bearing wall building were generally lower than the predicted strains and the measured values fell within a range ${\mu}-1.64$, confidence level 90%.

Column Shortening of SRC Columns Considering the Differential Moisture Distribution (부등수분분포를 고려한 SRC 기둥의 축소량에 관한 연구)

  • Seol, Hyun-Cheol;Kim, Yun-Yong;Kwon, Seung-Hee;Kim, Han-Soo;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.29-36
    • /
    • 2006
  • Steel reinforced concrete(SRC) columns, which have been widely employed in high-rise buildings, exhibit a time-dependent behavior because of creep and shrinkage of concrete. This long-term behavior may cause a serious serviceability problem in structural systems, so it is very important to predict the deformation due to creep and shrinkage of concrete. However, it was found from the previous experimental studies that the long-term deformation of SRC columns was quite dissimilar from that of RC columns. A new method is required to quantitatively predict the long-term deformation of SRC columns. In this study, the causes of the discrepancy between the behaviors of RC and SRC columns are investigated and discussed. SRC columns exhibit a time-dependent relative humidity distribution in a cross section differently from that of reinforced concrete(RC) columns owing to the presence of a inner steel plate, which interferes with the moisture diffusion of concrete. This relative humidity distribution may reduce the drying shrinkage and the drying creep in comparison with RC columns. Therefore it is suggested that the differential moisture distribution should be taken into account in order to reasonably predict column shortening of SRC columns.

Effect of Outrigger Wall Reinforced with Post Tension on Reducing Differential Column Shortening (포스트 텐션으로 보강된 아웃리거 벽체의 부등기둥축소량 저감 효과)

  • Lim, You-Jin;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.237-244
    • /
    • 2020
  • This study investigates the effect of the outrigger wall reinforced with post-tension on reducing differential column shortening. Since the outrigger wall is a concrete structure, the effect of its long-term behavior should be considered. The long-term behavior of the outrigger wall increases differential column shortening and decreases the shear force acting on the outrigger. When the stiffness of the outrigger becomes small, the effect of its long-term behavior increases. Furthermore, a method of reinforcing with post-tension to reduce differential column shortening is proposed. Following the analysis, it was confirmed that the post-tension method shows a significant reduction in the differential column shortening. This study shows that the effect of the outrigger wall reinforced with post-tension on reducing differential column shortening increases with the prestressing force of tendon.

Balanced Model Reduction for Linear Systems with State Delay (상태변수에 시간지연을 갖는 선형시스템의 균형화된 모델 차수 축소)

  • Yoo, Seog-Hwan
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.68-74
    • /
    • 1998
  • This paper deals with a model reduction problem for the linear systems with state delay. After defining the controllability/observability Gramians, the concept of a balanced model for the linear systems with state delay is introduced. Based on solutions of linear matrix inequalities, the model reduction method with guaranteed error bounds is developed. In order to demonstrate the efficacy of teh suggested method, a numerical example is also performed.

  • PDF

A Fractional Model Reduction for Linear Systems with State Delay (상태변수 시간지연을 갖는 선형시스템의 분수 모델 축소)

  • Yoo, Seog-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.2
    • /
    • pp.29-36
    • /
    • 2004
  • This paper deals with a fractional model reduction for linear systems with time varying delayed states. A contractive coprime factorization of linear time delayed systems is defined and obtained by solving linear matrix inequalities. Using generalize controllability and observability gramians of tile contractive coprime factor, a balanced state space realization of the system is derived. The reduced model will be obtained by truncating states in the balanced realization and an upper bound of model approximation error is also presented. In order to demonstrate efficacy of the suggested method, a numerical example is illustrated.

A Balanced Model Reduction for Linear Delayed Systems (시간지연시스템의 균형화된 모델차수 축소)

  • 유석환
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.326-332
    • /
    • 2003
  • This paper deals with a model reduction for linear systems with time varying delayed states. A generalized controllability and observability gramians are defined and obtained by solving linear matrix inequalities. Using the generalized controllability and observability gramians, the balanced state space equation is realized. The reduced model can be obtained by truncating states in the balanced realization and the upper bound of model approximation error is also presented. In order to demonstrate efficacy of the suggested method, a numerical example is performed.

Prediction of Differential Column Shortening for Reinforced Concrete Tall Buildings (시공단계를 고려한 철근콘크리트 고층건물 기둥의 부등축소량 해석)

  • Lee, Tae-Gyu;Kim, Jin-Keun;Song, Jin-Gyu
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.99-107
    • /
    • 1999
  • In this paper, the prediction method of the differential column shortening for cracked reinforced concrete tall buildings due to the construction sequence is presented. The cracked sectional properties from the strain and curvature of the sectional centroid is directly used. And the stiffness matrix of concrete elements considering the axial strain-curvature interaction effect is adopted. The creep and shrinkage properties used in the predictions were calculated in accordance with ACI 209, CEB-FIP 1990, and B3 model code. In order to demonstrate the validity of this algorithm, the prediction by the proposed method are compared with both the results of the in-situ test and the results by other simplified method. The proposed method is in good agreement with experimental results, and better than the simplified method.

Prediction and Evaluation on Inequality Shortening and Long-term Deflection of High-rise Flat Plate Structure using 3D Finite Element Analysis (3차원 유한요소해석을 이용한 고층 무량판 슬래브 구조물의 부등축소량 및 장기처짐 예측 평가)

  • Shim, Hak-Bo;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.159-160
    • /
    • 2020
  • Flat plate structures are designed in the form of long span due to the development of construction materials and the improvement of construction technology. However, a high-rise structure of a flat plate of 50 less floors is constructed without detailed review of the inequality shortening, long-term deflection of the slab, and cracks. Therefore, it is possible to examine the case of defects in the structure due to deformation and damage of non-structures such as crack and leak, deflection of the door frame, and deformation of equipment ducts. In this study, it is a high-rise structure, and the inequality shortening and long-term deflection of the slab of the flat plate structure were evaluated through finite element analysis, and it was confirmed that prior precision analysis and correction during construction is necessary.

  • PDF

A Column Shortening on High-Rise Building and Structural Effect under seismic load (초고층 건물의 기둥축소와 지진하중에 대한 구조적 영향)

  • 정은호;김희철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.3
    • /
    • pp.59-68
    • /
    • 1997
  • The necessity of a high-rise building in big cities gave a new problem to structural engineers. The shortening effect of vertical members needs special considerstion in the desigh and construction of high-rise buildings. The shortening of each column transfers load to nonstructural members such as partitions, cladding, and M/E systems which are not designed to carry gravity loads. Also, the slabs and beams will tilt due to the cumulative differential shortening of adjacent vertical members. The main purpose of estimating the total shortening of vertical structural members is to compensate the differential shortening between adjacent members. This paper presents the structural effect of differential shortening between in main structural members. Lateral earthquake load is applied to the 52 story concrete structure which has an initial vertical displacement due to the gravity load. Shortening amount for each vertical member was estimated using the computerized column shortening software. Comparison of stresses between the shortening corrected structure and the uncorrecated structure due to earthquake load was discussed.

  • PDF