• Title/Summary/Keyword: 부동태화

Search Result 17, Processing Time 0.025 seconds

Investigation of the corrosion properties of as extruded Mg5Sn(1-4)Zn ternary alloy (Mg5Sn(1-4)Zn 삼원계 압출재의 부식저항성 연구)

  • Ha, Heon-Yeong;Kim, Seong-Gyeong;Gang, Jeon-Yeon;Im, Chang-Dong;Yu, Bong-Seon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.15-15
    • /
    • 2012
  • Mg(1-4)Zn 이원계 압출재 및 Mg5Sn(1-4)Zn 삼원계 압출재의 부식거동을 3.5 % NaCl 용액에서 다양한 전기화학기법을 이용하여 평가하였다. 이원계 합금에 대한 연구결과, Zn 함량 증가에 따라 Mg 모재의 부동태화가 촉진되었고 동시에 수소발생속도가 증가하였으며 그 결과 부식전위의 상승이 관찰되었다. 그러나 Zn 함량 증가에 따른 부동태화 효과보다 수소발생 증가 효과가 우세하므로 결과적으로 Zn 함량 증가에 따라 부식속도는 증가하였다. Mg5Sn(1-4)Zn 삼원계 합금에 대한 부식시험 결과, Mg5Sn2Zn 합금이 가장 낮은 부식속도 및 우수한 부동태화를 나타내었으며 이는 합금원소 Sn의 수소발생속도 감소효과와 합금원소 Zn의 부동태화 효과의 상호작용에 의한 것으로 사료된다.

  • PDF

Mo 첨가 및 소둔 열처리에 따른 합금 690의 부식 저항성 및 기계적 특성

  • 전유택;박용수;김영식
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.597-602
    • /
    • 1995
  • 원자력 발전소 증기발생기 전열관 재료인 합금 600의 대체재료로써 설계된 합금 690의 내식성의 향상을 위해서 염소 이온이 다량 포함된 환경에서의 부식 저항성을 크게 향상시킨다고 보고된 Mo을 첨가하여 부식 및 기계적 특성에 미치는 영향을 알아보았다. 미세조직상 Mo를 첨가함에 따라 기지에 미세한 석출물이 석출되어 입자의 미세화를 얻을 수 있었으며 연신율의 감소없이 항복 강도, 인장 강도 및 경도의 향상을 얻을 수 있었다. 공식 저항성은 Mo의 첨가량이 증가함에 따라 부식 속도가 감소하였다. 양극 분극 시험에서도 5$0^{\circ}C$, 3.5wt% NaCl 용액과 0.5N HCl 용액 모두에서 Mo의 함량이 증가할수록 부동태화 전류 밀도 및 임계 부동태화 전류 밀도가 감소하여 전반적으로 현저한 내식성의 향상을 관찰할 수 있었다.

  • PDF

Effect of Oxide Film Formation on the Fatigue Behavior of Aluminum Alloy (알루미늄합금 재료의 산화막 형성이 피로거동에 미치는 영향)

  • Kim, Jong-Cheon;Cheong, Seong-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.421-428
    • /
    • 2012
  • In this study, the effects of surface oxide film formation on the fatigue behavior of 7075-T6 aluminum alloy were analyzed in terms of the corrosion time of the alloy. The aluminum material used is known to have high corrosion resistance due to the passivation phenomenon that prevents corrosion. Aluminum alloys have been widely used in various industrial applications such as aircraft component manufacturing because of their lighter weight and higher strength than other materials. Therefore, studies on the fatigue behavior of materials and passivation properties that prevent corrosion are required. The fatigue behavior in terms of the corrosion time was analyzed by using a four-pointing bending machine, and the surface corrosion level of the aluminum material in terms of the corrosion time was estimated by measuring the surface roughness. In addition, fractographic analysis was performed and the oxide films formed on the material surface were studied by scanning electron microscopy (SEM). The results indicated that corrosion actively progressed for four weeks during the initial corrosion phase, the fatigue life significantly decreased, and the surface roughness increased. However, after four weeks, the corrosion reaction tended to slow down due to the passivation phenomenon of the material. Therefore, on the basis of SEM analysis results, it was concluded that the growth of the surface oxide film was reduced after four weeks and then the oxide film on the material surface served as a protection layer and prevented further corrosion.

Evaluation of Corrosivity of Antifreeze for Automobiles Containing Non-amine Type Corrosion Inhibitors for Copper (Non-amine계 부식방지제를 포함하는 자동차용 부동액의 구리 부식성 평가)

  • Soh, Soon-Young;Chun, Yong-Jin;Park, In-Ha;Han, Sang-Mi;Jang, Hee-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.619-626
    • /
    • 2020
  • The development of new antifreeze mixtures containing non-amine-type corrosion inhibitors, which considers environmental protection, has become a major issue. In this study, four non-amine-type corrosion inhibitors were synthesized and used to produce five kinds of new antifreeze for automobiles to evaluate the rate of copper corrosion. The effects were evaluated by the weight change, surface observation, roughness measurement, and measurement of copper elution in the solution. The amount of copper eluted measured by ICP from Sample 4 was small, and the elution rate was prolonged. Sample 4 showed the best anti-corrosion performance owing to a corrosion suppression effect by passivating copper because the metal surface was smooth after the test, and the corrosion product layer was formed evenly on the surface as small local corrosion was observed. The major corrosion inhibitor added to Sample 4 was 1-aminomethyl(N',N'-di(2-hydroxyethyl)benzotrazole, which contained a certain amount in Sample 5 to show relatively high local corrosion but passivation in progress. Therefore, among the four corrosion inhibitors, 1-aminomethyl(N',N'-di(2-hydroxyethyl)benzotrazole had the highest corrosion inhibitory effect. This corrosion inhibitor prevents corrosion by promoting the passivation of copper on the antifreeze.

A Study on the Development of the High Rate Zinc-Silver Oxide Primary Battery (고율 아연-산화은 1차전지의 개발에 관한 연구)

  • 김세웅;공영경
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.05a
    • /
    • pp.114-117
    • /
    • 1994
  • 아연-산화은 전지는 높은 에너지 및 전력밀도를 가지고 있으나 비싼 제작비용 때문에 우주항공, 군사무기 등 특수한 분야에서 주로 이용되며, 특히 전해액이 별도의 용기에 보관되어 있다가 외부 신호에 의해 충전된 dry상태의 전지에 주입되어 활성화되는 1차 또는 비축형 아연산화은 전지는 우수한 고율방전 특성, 장시간의 저장기간 및 활성화와 동시에 부하를 인가 할 수 있는 특성 때문에 많은 무기체계에서 이용하고 있다. 이러한 아연-산화은 전지의 아연전극은 높은 다공도와 반응 면적을 가져야 하며, 특히 방전중 아연전극의 전위는 가역 수소전위 보다 더 음전위이기 때문에 수소가스가 다량 발생하게 되므로 수은과 같은 높은 과전압을 갖는 물질을 첨가하여 가스 발생량을 줄이고 부동태화(passivation)를 억제하게 된다. 그러나 국내 여건상 수은을 사용하여 전지를 제작하는 것은 환경문제 등으로 인하여 어렵기 때문에 본 연구에서는 수은을 사용하지 않고 비축형 아연-산화은 전지의 음극판을 제작하기 위하여 전착법(electro deposit)과 mesh 제작방법을 혼합하여 아연전극을 제작하였으며, 기판에 석출된 아연과 아연 mesh의 질량비율에 따른 전지의 성능을 평가하였다.

  • PDF

Synthesis and Performance of Dialkylamine (di-)nitrobenzoates for Vapor Corrosion Inhibitor (기화성방청제 Dialkylamine (di-)nitrobenzoates 합성 및 방청성능)

  • Chun, Yong-Jin;Park, Yong-Sung;Soh, Soon-Young
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.6-11
    • /
    • 1999
  • Dialkylamine (di-)nitrobenzoates as vapor corrosion inhibitor were synthesized with dialkylamines and (di-)nitrobenzoic acids. The compounds were analyzed by elemental analyzer, FT-IR and $^1H$-NMR spectrophotometer. Corrosion inhibition of synthetic compounds and additives [$(NH_4)_2CO_3$, $NaHCO_3$] against ferrous and non-ferrous metal was investigated by potentiostatic method [1% (w/v) corrosion inhibitor in 1M $Na_2SO_4$ aqueous solution] respectively. For corrosion inhibition of ferrous metal, dialkylamine 4-nitrobenzoates were better inhibitor than dialkylamine 3, 5-dinitrobenzoates, the passivating current density ($i_p$) of dialkylamine 4-nitrobenzoate was shown $4.78mA/cm^2$. While, for non-ferrous metal, dialkylamine 3, 5-dinitrobenzoates were better, those of dipropylamine 3, 5-dinitrobenzoate and hexamethyleneimine 3, 5-dinitrobenzoate were shown 36 and $37mA/cm^2$. Additive effect of $(NH_4)_2CO_3$ and $NaHCO_3$ for corrosion inhibition of ferrous metal was excellent but that of non-ferrous metal was not. Optimum ratios of diethylamine 4-nitrobenzoate with $(NH_4)_2CO_3$ and $NaHCO_3$ were 4 : 6 and 5 : 5 (V/V), and passivating current densities ($i_p$) of the mixtures were shown 0.26 and $0.85mA/cm^2$, respectively.

  • PDF

The Characteristics of water Quality on MSW Landfill Leachate with variation of the Oxidation-Reduction Potential (산화·환원 전위 변화에 따른 도시폐기물 매립지 침출수의 수질 변화 특성)

  • Huh, Mock
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.127-133
    • /
    • 2001
  • It can be known that from leachate generated in the initial stage of landfill there are a lot of undecomposed orgainc materials, its sulfur component reduces to sulfide ion by sulfur reducing microorgarnisms as an anaerobic digestion proceeds, the sulfide ion makes the leachate discolor to black by forming metal sulfide sol, on condition that much more equivalent of sulfide ion than that of metal ion is present, and the metal sulfide sol can be generated to the precipitates by forming black-colored particulates. Therefore, we can confirm the important possibility for the economic and efficient treatment of leachate that it can be passivated, provided that much more equivalent of sulfide ion is present in the reaction of sulfide ion and metal ion.

  • PDF

Improvement of Corrosion Resistance for Copper Tube by Electrochemical Passivation (전기화학적 부동태화에 의한 동관의 내식성 개선 연구)

  • Min, Sung-Ki;Kim, Kyung-Tae;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.125-130
    • /
    • 2011
  • This study was performed to improve the corrosion resistance and the stability of passive film on copper tube by potentiostatic polarization method in synthetic tap water. Formation of passive film was carried out by anodic potentiostatic polarization at various passivation potentials and passivation times in 0.1 M NaOH solution. Stability of passive film and corrosion resistance was evaluated by self-activation time, ${\tau}_0$ from passive state to active state on open-circuit state in 0.1 M NaOH solution. Addition of polyphosphate in NaOH solution prolonged the self-activation time and improved the corrosion resistance, and the addition of 5 ppm polyphosphate was most effective. It was also observed that better corrosion resistance was obtained by potentiostatic polarization at 1.0 V (vs. SCE) than at any other passivation potentials. Passivated copper tube showed perfect corrosion resistance for the immersion test in synthetic tap water showing that the anodic potentiostatic polarization treatment in 0.1 M NaOH with 5 ppm polyphosphate solution would be effective in improving the corrosion resistance and preventing the blue water problem.

A Study on Iron Electrode of Ni/Fe Battery(I) -High Utilization of Iron Electrode- (니켈/철 축전지의 철전극에 관한 연구(I) -철전극의 고이용률화-)

  • Kim, Un-Suk;Cho, Won-Il;Cho, Byung-Won;Yun, Kyung-Suk;Shin, Chee-Burm
    • Applied Chemistry for Engineering
    • /
    • v.5 no.1
    • /
    • pp.44-53
    • /
    • 1994
  • A study on the iron electrode which is a good material for alkaline battery because of its superior characteristics including high theoretical capacity density, low toxicity, low cost and inexhaustible supply was performed to develop high performance nickel-iron secondary battery. The characteristics of chrage-discharge reaction were examined by cyclic voltammetry technique SEM and XRD analysis. The capacity of the test electrodes was determined by the costant current charge-discharge method. It was found that the purity and particle size of iron material were the major determinant factors of electrode capacity. With the addition of $Na_2S$ into the electrolyte the capacity of electrode was increased about 20 % caused by the prevention of passivation and the increase of hydrogen overpotential. The stability and capacity of electrode were increased with the use of Ni-fibrex and foamed Ni collectors and also depended on the sintering temperature. The capacity of electrode was 350 mAh/g(0.2 C) which corresponded to 36% utility.

  • PDF