• Title/Summary/Keyword: 부도예측모형

Search Result 63, Processing Time 0.024 seconds

Domain Knowledge Incorporated Counterfactual Example-Based Explanation for Bankruptcy Prediction Model (부도예측모형에서 도메인 지식을 통합한 반사실적 예시 기반 설명력 증진 방법)

  • Cho, Soo Hyun;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.307-332
    • /
    • 2022
  • One of the most intensively conducted research areas in business application study is a bankruptcy prediction model, a representative classification problem related to loan lending, investment decision making, and profitability to financial institutions. Many research demonstrated outstanding performance for bankruptcy prediction models using artificial intelligence techniques. However, since most machine learning algorithms are "black-box," AI has been identified as a prominent research topic for providing users with an explanation. Although there are many different approaches for explanations, this study focuses on explaining a bankruptcy prediction model using a counterfactual example. Users can obtain desired output from the model by using a counterfactual-based explanation, which provides an alternative case. This study introduces a counterfactual generation technique based on a genetic algorithm (GA) that leverages both domain knowledge (i.e., causal feasibility) and feature importance from a black-box model along with other critical counterfactual variables, including proximity, distribution, and sparsity. The proposed method was evaluated quantitatively and qualitatively to measure the quality and the validity.

Developing an Ensemble Classifier for Bankruptcy Prediction (부도 예측을 위한 앙상블 분류기 개발)

  • Min, Sung-Hwan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.139-148
    • /
    • 2012
  • An ensemble of classifiers is to employ a set of individually trained classifiers and combine their predictions. It has been found that in most cases the ensembles produce more accurate predictions than the base classifiers. Combining outputs from multiple classifiers, known as ensemble learning, is one of the standard and most important techniques for improving classification accuracy in machine learning. An ensemble of classifiers is efficient only if the individual classifiers make decisions as diverse as possible. Bagging is the most popular method of ensemble learning to generate a diverse set of classifiers. Diversity in bagging is obtained by using different training sets. The different training data subsets are randomly drawn with replacement from the entire training dataset. The random subspace method is an ensemble construction technique using different attribute subsets. In the random subspace, the training dataset is also modified as in bagging. However, this modification is performed in the feature space. Bagging and random subspace are quite well known and popular ensemble algorithms. However, few studies have dealt with the integration of bagging and random subspace using SVM Classifiers, though there is a great potential for useful applications in this area. The focus of this paper is to propose methods for improving SVM performance using hybrid ensemble strategy for bankruptcy prediction. This paper applies the proposed ensemble model to the bankruptcy prediction problem using a real data set from Korean companies.

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.

Bankruptcy prediction using ensemble SVM model (앙상블 SVM 모형을 이용한 기업 부도 예측)

  • Choi, Ha Na;Lim, Dong Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1113-1125
    • /
    • 2013
  • Corporate bankruptcy prediction has been an important topic in the accounting and finance field for a long time. Several data mining techniques have been used for bankruptcy prediction. However, there are many limits for application to real classification problem with a single model. This study proposes ensemble SVM (support vector machine) model which assembles different SVM models with each different kernel functions. Our ensemble model is made and evaluated by v-fold cross-validation approach. The k top performing models are recruited into the ensemble. The classification is then carried out using the majority voting opinion of the ensemble. In this paper, we investigate the performance of ensemble SVM classifier in terms of accuracy, error rate, sensitivity, specificity, ROC curve, and AUC to compare with single SVM classifiers based on financial ratios dataset and simulation dataset. The results confirmed the advantages of our method: It is robust while providing good performance.

A Hybrid Under-sampling Approach for Better Bankruptcy Prediction (부도예측 개선을 위한 하이브리드 언더샘플링 접근법)

  • Kim, Taehoon;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.173-190
    • /
    • 2015
  • The purpose of this study is to improve bankruptcy prediction models by using a novel hybrid under-sampling approach. Most prior studies have tried to enhance the accuracy of bankruptcy prediction models by improving the classification methods involved. In contrast, we focus on appropriate data preprocessing as a means of enhancing accuracy. In particular, we aim to develop an effective sampling approach for bankruptcy prediction, since most prediction models suffer from class imbalance problems. The approach proposed in this study is a hybrid under-sampling method that combines the k-Reverse Nearest Neighbor (k-RNN) and one-class support vector machine (OCSVM) approaches. k-RNN can effectively eliminate outliers, while OCSVM contributes to the selection of informative training samples from majority class data. To validate our proposed approach, we have applied it to data from H Bank's non-external auditing companies in Korea, and compared the performances of the classifiers with the proposed under-sampling and random sampling data. The empirical results show that the proposed under-sampling approach generally improves the accuracy of classifiers, such as logistic regression, discriminant analysis, decision tree, and support vector machines. They also show that the proposed under-sampling approach reduces the risk of false negative errors, which lead to higher misclassification costs.

Link Weight Discrimination Analysis based Design of Input Nodes in ANN Models for Bankruptcy Prediction: Strong-Linked Neurons Selection and Weak-Linked Neurons Elimination Approach (연결강도판별분석에 의한 부도예측용 신경망 모형의 입력노드 설계 : 강체연결뉴론 선정 및 약체연결뉴론 제거 접근법)

  • 이웅규;손동우
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.469-477
    • /
    • 2000
  • 본 연구에서는 부도예측용 인공신경망 모형의 입력노드를 선정하기 위한 방법론으로 연결강도판별분석(Link Weight Discrimination Analysis)에 의한 약체뉴론제거법(Weak-Linked Neuron Elimination)과 강체뉴론선택법 (Strong-Linked Neurons Selection)을 제안한다. 연결강도판별분석이란 적절한 학습이 끝난 인공신경망 모형에서 입력노드와 연결되는 가중치의 합에 대한 절대값인 연결강도 판별식(Link Weight Discrimination)에 의해 해당 입력노 드가 출력노드에 미치는 영향정도를 분석하는 것이다. 한편 강체연결뉴론선택법은 선처리를 통해 얻어진 학습된 인공신경망의 입력노드 가운데서 연결강도판별식이 큰 뉴론만을 본처리의 입력노드로 선정하는 것인데 비해 약체연결뉴론제거법은 연결강도판별식이 일정 값 즉, 연결강도 판별임계치(Link Weight Discrimination Cut off Value) 보다 낮은 입력노드를 제외하고 나머지 입력노드만을 본처리의 입력노드로 선정하는 것이다. 본 연구에서는 강체연결뉴론선택법과 약체연결뉴론제거법을 각각 정형적인 방법론으로 정립하고 이 방법론에 의해 부도예측용 인공신경망을 구축하여 각각의 모형을 의사결정트리에 의해 선정된 인공신경망 모형 및 선처리 과정을 거치지 않은 인공신경망 모형과 성능을 비교, 분석하여 본 연구에서 제안한 방법론의 타당성을 제시하였다.

  • PDF

Using Business Failure Probability Map (BFPM) for Corporate Credit Rating (다중 부실예측모형을 이용한 통합 신용등급화 방법)

  • 신택수;홍태호
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.835-842
    • /
    • 2003
  • 현행 기업신용평가모형에 관한 연구는 크게 부실예측모형 및 채권등급 평가모형으로 구분된다. 이러한 신응평가모형에 관한 연구는 단순히 부실여부 또는 이미 전문가 집단에 의해 사전에 정의된 등급체계만을 예측하는 데 초점을 맞추고 있었다. 그러나. 대부분의 금융기관에서 사용하는 신응평가모형은 기업의 부실여부만을 예측하거나 기존의 채권등급을 예측하기 위만 목적보다는 기업의 고유 신응위험을 평가하여 이에 적합한 신용등급을 부여함으로써, 효율적인 대출업무를 수행하기 위해 활용되고 있다. 본 연구에서는 기존의 부실예측모형들을 대상으로 다중 부실확률모형 (Business Failure Probability Map; BFPM) 접근방법을 이용한 신응등급화 방법을 제안하고자 한다. 본 연구에서 제시된 다중 부실확률모형은 신경망모형과 로짓모형을 통합하여 부도율, 점유율을 고려한 다단계 신용등급을 예측할 수 있게 해준다. 다중 부도확률지도 접근방법을 이용하여 각 금융기관에서 정의하는 수준의 신용리스크를 효과적으로 추정하고, 이를 기준으로 보다 객관적인 다단계 신용등급을 산출하는 새로운 신응등급화 방법을 제시 하고자 한다.

  • PDF

Bankruptcy Prediction Modeling Using Qualitative Information Based on Big Data Analytics (빅데이터 기반의 정성 정보를 활용한 부도 예측 모형 구축)

  • Jo, Nam-ok;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.33-56
    • /
    • 2016
  • Many researchers have focused on developing bankruptcy prediction models using modeling techniques, such as statistical methods including multiple discriminant analysis (MDA) and logit analysis or artificial intelligence techniques containing artificial neural networks (ANN), decision trees, and support vector machines (SVM), to secure enhanced performance. Most of the bankruptcy prediction models in academic studies have used financial ratios as main input variables. The bankruptcy of firms is associated with firm's financial states and the external economic situation. However, the inclusion of qualitative information, such as the economic atmosphere, has not been actively discussed despite the fact that exploiting only financial ratios has some drawbacks. Accounting information, such as financial ratios, is based on past data, and it is usually determined one year before bankruptcy. Thus, a time lag exists between the point of closing financial statements and the point of credit evaluation. In addition, financial ratios do not contain environmental factors, such as external economic situations. Therefore, using only financial ratios may be insufficient in constructing a bankruptcy prediction model, because they essentially reflect past corporate internal accounting information while neglecting recent information. Thus, qualitative information must be added to the conventional bankruptcy prediction model to supplement accounting information. Due to the lack of an analytic mechanism for obtaining and processing qualitative information from various information sources, previous studies have only used qualitative information. However, recently, big data analytics, such as text mining techniques, have been drawing much attention in academia and industry, with an increasing amount of unstructured text data available on the web. A few previous studies have sought to adopt big data analytics in business prediction modeling. Nevertheless, the use of qualitative information on the web for business prediction modeling is still deemed to be in the primary stage, restricted to limited applications, such as stock prediction and movie revenue prediction applications. Thus, it is necessary to apply big data analytics techniques, such as text mining, to various business prediction problems, including credit risk evaluation. Analytic methods are required for processing qualitative information represented in unstructured text form due to the complexity of managing and processing unstructured text data. This study proposes a bankruptcy prediction model for Korean small- and medium-sized construction firms using both quantitative information, such as financial ratios, and qualitative information acquired from economic news articles. The performance of the proposed method depends on how well information types are transformed from qualitative into quantitative information that is suitable for incorporating into the bankruptcy prediction model. We employ big data analytics techniques, especially text mining, as a mechanism for processing qualitative information. The sentiment index is provided at the industry level by extracting from a large amount of text data to quantify the external economic atmosphere represented in the media. The proposed method involves keyword-based sentiment analysis using a domain-specific sentiment lexicon to extract sentiment from economic news articles. The generated sentiment lexicon is designed to represent sentiment for the construction business by considering the relationship between the occurring term and the actual situation with respect to the economic condition of the industry rather than the inherent semantics of the term. The experimental results proved that incorporating qualitative information based on big data analytics into the traditional bankruptcy prediction model based on accounting information is effective for enhancing the predictive performance. The sentiment variable extracted from economic news articles had an impact on corporate bankruptcy. In particular, a negative sentiment variable improved the accuracy of corporate bankruptcy prediction because the corporate bankruptcy of construction firms is sensitive to poor economic conditions. The bankruptcy prediction model using qualitative information based on big data analytics contributes to the field, in that it reflects not only relatively recent information but also environmental factors, such as external economic conditions.

Design of Optimal Input Nodes in Artificial Neural Network Models for Bankruptcy prediction: Link Weight Discrimination Analysis Approach (부도예측용 인공신경망모형의 최적 입력노드 설계: 연결강도판별분석 접근)

  • 이웅규;손동우
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.251-258
    • /
    • 2000
  • 인공신경망에 의해 부도예측을 하기 위해서는 여러 개의 재무비율을 입력변수 즉, 입력노드로 이용하는데, 이 가운데 적절한 입력노드를 선정하는 일은 예측력을 결정하는데 있어서 매우 중요하다. 본 연구에서는 새로운 입력노드 선정 휴리스틱을 제안하기 위하여 적절한 훈련이 끝난 인공신경망 모델에서 각 입력노드와 연결되는 가중치들의 합에 대한 절대값인 연결강도가 작은 경우 해당 노드는 출력값에 대한 설명력이 약할 것이다라는 연결강도판별 명제를 제시한다. 즉, 연결강도가 연결강도임계치보다 작은 입력노드는 제거 대상으로 분류할 수 있을 것이고, 이들 노드를 제외한 입력노드는 그렇지 않은 경우보다 더 나은 예측력을 보여 줄 수 있을 것이다. 연결강도판별 명제를 실증적으로 입증하기 위해 본 연구에서는 연결강도판별 선처리 과정에 대한 방법론을 제안하고 제안된 방법론에 의해 부도예측을 실시하여 아무런 선처리를 거치지 않은 모형과 비교하였고, 또 기존의 입력변수 선정방식 중에 하나인 의사결정트리 방식에 의한 입력변수 선정 모형과도 비교하여 더 나은 결과를 얻었다.

  • PDF

A Development of Traffic Accident Model by Random Parameter : Focus on Capital Area and Busan 4-legs Signalized Intersections (확률모수를 이용한 교통사고예측모형 개발 -수도권 및 부산광역시 4지 교차로를 대상으로-)

  • Lee, Geun-Hee;Rho, Jeong-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.91-99
    • /
    • 2015
  • This study intends to build a traffic accident predictive model considering road geometrics, traffic and enviromental characteristics and identify the relationship of 4-legs intersection accidents in Seoul and Busan metropolitan area. The RPNB(Random Parameter Negative Binomial) model shows improvement over the fixed NB(Negative Binomial) and out of 53 variables, 10 variables (main road number of lane, main road vehicle traffic volume(left), minor road vehicle traffic volume(right), main road drive restriction, minor road sight distance, minor road median strip, minor road speed limit, minor road speed restriction) showed to have significant variables affecting traffic accident occurrences in 4-legs signilized intersections. Also, among 10 significant variables, 2 variables(minor road sight distance, minor road speed restriction) found to be random parameters.