• Title/Summary/Keyword: 볼-스크류

Search Result 86, Processing Time 0.02 seconds

A Study on Effect of Various Cooling Methods in Motion of High-Precision Ball Screw (고속 고정밀 볼 스크류 구동에 따른 강제 냉각방식의 효과에 관한 연구)

  • Kim, Su-Sang;Xu, Zhe-Zhu;Kim, Hyun-Koo;Lyu, Sung-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.254-259
    • /
    • 2013
  • Ball screw system is widely used as a precision mechanical linear actuator that translates rotational motion to linear motion for its high efficiency, great stiffness and long life. Recently, according to the requirements of high accuracy and stiffness, the pre-load on the ball screw which means of remove the backlash in the ball screw is usually used. Because of the preload which means the frictional resistance between the screw and nut, becomes a dominating heat source and it generates thermal deformation of ball screw which is the reason for low accuracy of the positioning decision. There are several methods to solve the problem that includes temperature control, thermal stable design and error compensation. In the past years, researchers focused on the error compensation technique for its ability to correct ball screw error effectively rather than the capabilities of careful machine design and manufacturing. Significant amounts of researches have been done to real-time error compensation. But in this paper, we developed a series of cooling methods to get thermal equilibrium in the ball screw system. So we find the optimum cooling type for improving positioning error which caused by thermal deformation in the ball screw system.

Design Study of a Simulation Duct for Gas Turbine Engine Operations (가스터빈엔진을 모의하기 위한 시뮬레이션덕트 설계 연구)

  • Im, Ju Hyun;Kim, Sun Je;Kim, Myung Ho;Kim, You Il;Kim, Yeong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.124-131
    • /
    • 2019
  • A design study of gas turbine engine simulation duct was conducted to investigate the operating characteristics and control gain tunning of the Altitude Engine Test Facility(AETF). The simulation duct design involved testing variable spike nozzle and ISO standard choking nozzle to verify the measurements such as mass flow rate and thrust. The simulation duct air flow area was designed to satisfy Ma 0.4 at the aerodynamic interface plane(AIP) at engine design condition. The test conditions for verifying the AETF controls and measurement devices were deduced from 1D analysis and CFD calculation results. The spike-cone driving part was designed to withstand the applied aero-load, and satisfy the axial traversing speed of 10 mm/s at whole operation envelops.

A Design Method of Three-phase IPMSM and Clamping Force Control of EMB for High-speed Train (고속철도차량의 EMB 적용을 위한 3상 IPMSM의 설계 및 제동압부력 제어)

  • Baek, Seung-Koo;Oh, Hyuck-Keun;Kwak, Min-ho;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.578-585
    • /
    • 2018
  • This paper proposes a design method for a 3-phase interior permanent magnet synchronous motor (IPMSM) and clamping force control method for an electro-mechanical brake (EMB) using co-simulation for a high-speed train (HST). A traditional pneumatic brake system needs much space for the compressor, brake reservoir, and air pipe. However, an EMB system uses up to 50% less space due to the use of a motor and electric wires for controlling the brake caliper. In addition, it can reduce the latency time for brake control because of the fast response and precise control. A train that has many brakes is advantageous for safety because of the control by sharing the braking force. In this paper, a driving method for a cam-shaft-type EMB is modeled. It is different from the ball-screw-type brakes that are widely used in automobiles. In addition, a co-simulation method is proposed using JMAG and Matlab/Simulink. The IPMSM was designed and analyzed with the JMAG tool, and the control system was simulated using Matlab/Simulink. The effectiveness of the co-simulation results of the mechanical clamping force and braking force was verified by comparison with the clamping force specifications of a HEMU-430X HST.

The Design of an Auto Tuning PI Controller using a Parameter Estimation Method for the Linear BLDC Motor (선형 추진 BLDC 모터에 대한 파라미터 추정 기법을 이용하는 오토 튜닝(Auto Tuning) PI 제어기 설계)

  • Cha Young-Bum;Song Do-Ho;Koo Bon-Min;Park Moo-Yurl;Kim Jin-Ae;Choi Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.659-666
    • /
    • 2006
  • Servo-motors are used as key components of automated system by performing precise motion control as accurate positioning and accurate speed regulation in response to the commands from computers and sensors. Especially, the linear brushless servo-motors have numerous advantages over the rotary servo motors which have connection with the friction induced transfer mechanism such as ball screws, timing belts, rack/pinion. This paper proposes an estimation method of unknown motor system parameters using the informations from the sinusoidal driving type linear brushless DC motor dynamics and outputs. The estimated parameters can be used to tune the controller gain and a disturbance observer. In order to meet this purpose high performance Digital Signal Processor, TMS320F240, designed originally for implementation of a Field Oriented Control(FOC) technology is adopted as a controller of the liner BLDC servo motor. Having A/D converters, PWM generators, rich I/O port internally, this servo motor application specific DSP play an important role in servo motor controller. This linear BLDC servo motor system also contains IPM(Intelligent Power Module) driver and hail sensor type current sensor module, photocoupler module for isolation of gate signals and fault signals.

Implementation of High Efficiency Generators Applicable to Climbing Sticks (등산스틱에 적용 가능한 고효율 발전기 구현)

  • Gul-Won Bang
    • Journal of Industrial Convergence
    • /
    • v.22 no.7
    • /
    • pp.15-21
    • /
    • 2024
  • A hiking stick is generally one of the walking aids that allow hikers to walk while relying on their own bodies when walking. A rechargeable battery must be built into the hiking stick, which is an auxiliary device, in order to perform various functions. A separate power supply is required to charge the rechargeable battery. This study is about a self-generated power supply and develops a power generation device using a screw with higher power generation efficiency than the existing method. It is differentiated from the method suggested in this study by comparing and analyzing it with the existing power generation method, and identifying problems therewith. The screw-type power generation device generates power when the climbing stick comes into contact with the ground and when it is separated from the ground. The built-in power generation device does not require a separate power supply, and it can be used by attaching the role of a mobile phone auxiliary battery and a lighting lamp, and it has the effect of being able to find it through location tracking by embedding a GPS sensor, etc., and using lighting to keep the user safe in emergency situations such as distress. The existing generator with built-in mountain climbing stick is difficult to charge due to very weak current and low practicality, but the generator developed in this research could achieve high efficiency to obtain a sufficient current, so it is possible to charge a battery and practicality.

Development of Pharmaceutical Dosage Forms with Biphasic Drug Release using Double-Melt Extrusion Technology (이중 고온용융 압출 성형된 이중 방출능을 가지는 제형의 개발)

  • Kim, Dong-Wook;Kang, Chin-Yang;Kang, Changmin;Park, Jun-Bom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.228-234
    • /
    • 2016
  • The aim of this study was to develop pharmaceutical dosage forms with a bi-phasic drug using a double extrusion approach. Hot melt extrusion was performed using a co-rotating twin-screw extruder. The. 1st melt extrusion was performed using polymer with a relatively higher Tg, such as HPMC and the 2nd melt extrudate was obtained using the 1st extrudate and polymers with a lower Tg, such as HPMC-AS and PEO. In addition, the formulation with all the content in the same proportion as the double extudate was produced using single extrusion for comparison. Physical characterization was performed on the formulations employing differential scanning calorimetry (DSC). In vitro release tests were studied using a USP Type-I apparatus at $37{\pm}0.5^{\circ}C$ and 100 rpm. The similarity factor (f2) was also used to check the difference statistically. The DSC results indicated that the crystallinity of ibuprofen was changed to an amorphous state after extrusion in both double and single melt extrusion. Double melt extrudate with ibuprofen showed the desired release in acidic media (pH 1.2) in the first two hours and basic (pH 6.8) during six hours. Double melt extrudate with glimepiride showed faster release in 60 min of over 80%, whereas the single extrudate with glimepiride showed retarded release due to the interaction with HPMC. The similarity factor(f2) value was 28.5, which demonstrates that there were different drug release behavior between the double and single extrusion. Consequently, the double melt extrudated formulation was robust and gave the desired drug release pattern.