• Title/Summary/Keyword: 볼트 변형

Search Result 148, Processing Time 0.024 seconds

Slip Behavior of High-Tension Bolted Joints Subjected to Compression Force (압축력을 받는 고장력 볼트 이음부의 미끄러짐 거동)

  • Han, Jin Hee;Choi, Jong Kyoung;Heo, In Sung;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.279-288
    • /
    • 2008
  • In this study, the slip behavior of high-tension bolted joints subjected to compression force is investigated through 3D finite element analysis and experiments. The relation with sliding load, bolt deformation, and failure load are studied with the metal thickness affecting the bolted joint. The post-sliding behavior considering bolt stiffness is presented and compared with the results by finite element and experiments. The finite element model is constructed by solid elements in ABAQUS, in consideration of all the friction effects between metal plates and bolts. The stress-strain relations in the literature are used, and the sliding displacements and axial stresses around the bolt connection are investigated. The flexural buckling of species happened when the plate thickness is less than the bolt diameter. However, the shear failures of bolt occurred in the opposite case.

Experimental Study on Circular Flange Joints in Tubular Structures (원형강관 플랜지 이음에 관한 실험적 연구)

  • Shin, Chang-Hoon;Han, Duck-Jen
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.119-127
    • /
    • 2002
  • This paper presents a study of the behaviour of bolted circular flange joints in tubular structures. In the tests on nine circular flange joints, different tension forces was applied to the joints and bolt strains, displacements and strains in the joints have been measured. Bolt strain, contact force(prying force) between flanges and stress distribution in a joint have been studied. Different methods used for the design of circular flange joints are described.

An Experimental Study on Structural Behavior of Bolted Angle Connections with Austenitic Stainless Steel (오스테나이트계 스테인레스강(STS304) 앵글 볼트 접합부의 구조적 거동에 관한 실험적 연구)

  • Kim, Min-Seong;Kim, Tae-Soo;Kim, Seung-Hun;Lee, Yong-Taeg
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.29-39
    • /
    • 2011
  • With regard to steel construction, many studies have been performed to examine the structural behavior of the bolted connections domestically and in other countries. Especially, a domestic study was conducted on the block shear fracture and shear lag effect on the single-bolted angle connection in carbon steel. In this study, specimens were prepared with the end distance parallel to the loading direction and bolt arrangement ($1{\times}1$, $1{\times}2$), as the main variables. Then the fracture mode and the curling effect on the bolted angle connection in austenitic stainless steel were investigated. Moreover, the fracture mode and ultimate strength were compared, and the strength reduction by curling was estimated.

Development of Advanced Mechanical Analysis Models for the Bolted Connectors under Cyclic Loads (반복하중을 받는 볼트 연결부에 대한 역학적인 고등해석 모델의 개발)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.101-113
    • /
    • 2013
  • This paper intends to develop mechanical analysis models that are able to predict complete nonlinear behavior in the bolted connector subjected to cyclic loads. In addition, experimental data which were obtained from loading tests performed on the T-stub connections are utilized to validate the accuracy of analytical prediction and the adequacy of numerical modeling. The behavior of connection components including tension bolt uplift, bending of the T-stub flange, stem elongation, relative slip deformation, and bolt bearing are simulated by the multi-linear stiffness models obtained from the observation of their individual force-deformation mechanisms in the connection. The component springs, which involve the stiffness properties, are implemented into the simplified joint element in order to numerically generate the behavior of full-scale connections with considerable accuracy. The analytical model predictions are evaluated against the experimental tests in terms of stiffness, strength, and deformation. Finally, it can be concluded that the mechanical models proposed in this study have the satisfactory potential to estimate stiffness response and strength capacity at failure.

Structural Analysis of High Precision Reflector Using Finite Element Analysis (유한요소해석법을 이용한 고정밀 반사경의 구조 해석)

  • Lee, Sang-Yong;Kim, Ghiseok;Kim, Geon-Hee;Lee, Young-Shin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.154-159
    • /
    • 2013
  • In this paper, the effect of bolt clamping force and form accuray of contact surface between mirror and mount on mirror surface was studied. Normally, mirror used in reflecting optical system was assembled with mount by bolts or adhesive. In this case, the tension caused by bolt clamping force or adhesive force may distort the mirror surface. Also, form accuracy error of the contact surface have a negative impact on wrenched mirror surface which assembled by bolts or adhesive. In this study, stress and distorted displacements on mirror surface were analyzed according to the different contact surface form accuracies and bolt clamping forces by using the finite element analysis method.

An Experimental Study on Ultimate Behavior of Thin-walled Carbon Steel Bolted Connections with Varying Plate Thickness and End Distance (평판두께와 연단거리를 변수로 갖는 박판탄소강 볼트접합부의 종국거동에 관한 실험적 연구)

  • Lee, Yong Taeg;Kim, Tae Soo;Jeong, Ha Young;Kim, Seung Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.527-536
    • /
    • 2009
  • The purpose of this experimental study was to investigate the block shear fracture behavior and curling effect on a single shear-bolted connection in thin-walled carbon steel fabricated with four bolts. The specimens that fail by block shear were planned to have a constant dimension of the edge distance perpendicular to the loading direction, bolt diameter, pitch, and gage. The main variables of the specimens were plate thickness and end distance parallel to the loading direction. A monotonic tensile test was carried out for the bolted connections, and the ultimate behaviors, such as the fracture shape, ultimate strength, and curling, were compared with those that had been predicted using the current design specifications. The conditions of curling occurrence in terms of plate thickness and end distance were also investigated, and the strength reduction due to curling was considered.

A Study on the Validity of 2-Dimensional Analysis of Rock Bolt (록볼트의 2차원 수치해석에 대한 타당성 검토)

  • Seok Jeong Hyeon;Kim Bo Byun;Sik Yang Hyung
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.423-428
    • /
    • 2004
  • The stability of tunnels is usually analyzed as plain strain condition and rock bolts are assumed as 2 dimensional equivalent continuum structures. In this study, 2 and 3 dimensional numerical analyses were conducted to verify the validity of 2 dimensional analysis of rock bolts. Since the results of 2 dimensional analysis showed more than $10\%$ differences in poor rocks, it seems that 3 dimensional analysis is required in poor rocks.

Time Dependent Reduction of Clamping Forces of High Strength Bolt F13T (시간에 따른 F13T 고장력 볼트의 체결력 감소)

  • Jo, Jae Byung;Seong, Taek-Ryong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.291-297
    • /
    • 2009
  • Relaxation of high strength bolts was investigated. Block type and splice type specimens were fabricated with different types of bolts and different clamping lengths. Bolts were tightened to the specified torque. Clamping forces were measured through strain gauges installed on the shafts of bolts, while specimens were kept in a constant temperature and humidity. In all cases, ratio of clamping force reduction is less than 10%. Test results of different types of specimens and bolts and different clamping lengths were compared each other by using a simple model, which is suggested in this study for the estimation of bolt relaxation. The suggested model shows reasonably good agreements with test results for all cases. No difference is found between F13T and F10T bolts, but Dacro coated bolts shows higher relaxation than black bolts by approx. 30%. And also the comparison of test results shows that ratios of bolt relaxation become larger as clamping lengths of bolt shorter and the number of faying surfaces greater.

Mechanical Behavior of High-tension Bolted Joints with Varying Bolt Size and Plate Thickness (볼트의 크기 및 판두께의 차이에 따른 고장력볼트 이음부의 역학적 거동에 관한 연구)

  • Lee, Seung Yong;Choi, Jun Hyeok;Kim, Sung Hoon;Park, Cheol Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.67-74
    • /
    • 2006
  • The use of steel plates has been greatly increased in bridge construction, particularly for long-span bridges. For connections of those steel plates in the field, application of high-tension bold, such as M30, is highly demanded. However, the current steel construction specifications in Korea do not provide information for large-sized bolt connections. In order to evaluate the applicability of the large-sized high-tension bolt, this study experimentally investigates relaxation and slip behavior of M30 bolts with varying bolt size and plate thickness. In addition, internal compressive stress was computed using FEM analysis. The analyzed results were compared with the stress distribution measured from strain gages attached on bolts and bolt holes. From the study presented herein, the M30 high-tension bolts are anticipated to be successfully used with the relaxation less than 10% and the slip coefficient satisfying the specified limit.

Modeling the Effect of Excavation Sequence and Reinforcement on the Response of Tunnels with Discontinuous Deformation Analysis Method (불연속 변형 해석법에 의한 굴착순서 및 지반보강이 터널의 거동에 미치는 영향 모델링)

  • 김용일;김영근
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • This paper presents two new extensions to the DDA method. The extensions consist of sequential loading or unloading and rock reinforcement by rockbolts, shotcrete or concrete lining. Examples of application of the DDA method with the new extensions are presented. Simulations of the underground excavation of the Unju Tunnel of Kyungbu High Speed Railway Project in Korea were carried out to evaluate the influence of excavation sequence and reinforcement on the tunnel stability. The results of the present study indicate that improper selection of excavation sequence could have a destabilizing effect on the tunnel stability. On the other hand, reinforcement by rockbolts and shotcrete can stabilize the tunnel. It is found that, in general, the DDA program with the three new extensions can now be used as d practical tool in the design of underground structures. In particular, phases of construction (excavation, reinforcement) can now be simulated more realistically.

  • PDF