This paper proposes a convex hull algorithm for 2D patterns. The proposed algorithm is divided ito 2steps; candidate convex point extraction and final convex point extraction. First step removes as many points as possible that cannot be convex points using simple operation. Second step computes final convex hull of 2D patterns. This method accelerates execution time, since it consists of simple operations. Experimental results show that the proposed method is faster than other 2 methods in speed.
Journal of the Korea Society of Computer and Information
/
v.16
no.3
/
pp.99-107
/
2011
The feature extraction of asterias amurensis by using patterns is difficult to extract all the concave and convex features of asterias amurensis nor classify concave and convex. Concave and convex as important structural features of asterias amurensis are the features which should be found and the classification of concave and convex is also necessary for the recognition of asterias amurensis later. Accordingly, this study suggests the technique to extract the features of concave and convex, the main features of asterias amurensis. This technique classifies the concave and convex features by using the multi-directional linear scanning and form the candidate groups of the concave and convex feature points and decide the feature points of the candidate groups and apply convex hull algorithm to the extracted feature points. The suggested technique efficiently extracts the concave and convex features, the main features of asterias amurensis by dividing them. Accordingly, it is expected to contribute to the studies on the recognition of asterias amurensis in the future.
Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.440-442
/
2000
필기 한글 문자 인식을 위해서는 패턴을 구성하는 획 성분을 분석하는 작업이 필수적이다. 획 성분 추출을 위해 사용한 세선화 방법은 입력 영상을 왜곡하는 단점을 가지고 있다. 이를 극복하기 위하여 본 논문은 입력 영상을 왜곡하지 않고 의미 있는 부품 단위로 분할하는 방법을 제안한다. 의미 있는 부품이란 유사 볼록하게 분할된 영역을 의미한다. 분할 방법은 먼저 입력 영상에 볼록 헐 연산을 적용하여 오목 영역을 생성한다. 이 오목 영역에서 분할 기준(anchor point)점을 탐지하고 획의 반대편 외곽선 상에서 분할 끝(terminal point)점을 찾아 분할 경로를 구성하여 획을 분할한다. 모든 부품이 유사 볼록 조건을 만족할 때까지 위 과정을 반복 수행한다. 제안한 방법은 두 개의 파라미터만을 가지며 간단한 프로시져로 구성되어 있다. 또한 필기 한글 패턴뿐 아니라 여러 언어에 적용 가능하다는 장점을 갖는다.
This paper is concerned with the mesh segmentation problem that can be applied to diverse applications such as texture mapping, simplification, morphing, compression, and shape matching for 3D mesh models. The mesh segmentation is the process of dividing a given mesh into the disjoint set of sub-meshes. We propose a method for segmenting meshes by simultaneously reflecting global and local geometric characteristics of the meshes. First, we extract sharp vertices over mesh vertices by interpreting the curvatures and convexity of a given mesh, which are respectively contained in the local and global geometric characteristics of the mesh. Next, we partition the sharp vertices into the $\kappa$ number of clusters by adopting the $\kappa$-means clustering method [29] based on the Euclidean distances between all pairs of the sharp vertices. Other vertices excluding the sharp vertices are merged into the nearest clusters by Euclidean distances. Also we implement the proposed method and visualize its experimental results on several 3D mesh models.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.464-466
/
1999
필기 한글 문자 인식을 위해서는 패턴을 구성하는 획 성분을 분석하는 작업이 필수적이다. 기존 인식 방법들은 세선화와 직선 근사에 기반한 방법을 사용하였다. 하지만 세선화는 필기 패턴을 크게 왜곡하는 단점을 안고 있기 때문에 새로운 방법론의 필요성이 대두되고 있다. 본 논문에서는 필기 한글 패턴의 영역-기반 모양 분해 알고리즘을 제안한다. 외곽선 분석을 이용한 기존의 한 단계 알고리즘의 한계를 지적하고, 이 한계를 극복할 수 있는 두 단계 알고리즘을 기술한다. 첫 번째 단계에서는 우세점을 찾아 B접점과 T접점을 탐지한다. 두 번째 단계에서는 볼록 헐(convex hull) 연산을 적용하여 미분할된 부분에 대해 두 번째 분할 작업을 수행한다. PE92 데이터베이스에 대해 실험 한 결과는 세선화 방법보다 우수함을 보인다.
Proceedings of the Korea Information Processing Society Conference
/
2012.11a
/
pp.330-332
/
2012
본 논문에서는 임의의 정렬되지 않은 평면 점집합(Plane Point Set)에서 정렬을 고려한 개선된 Convex Hull 알고리즘을 제안한다. 이 알고리즘은 Convex Hull의 극점(Extreme Point) 특성을 이용하여 처리 데이터를 한정하기 때문에 계산복잡도를 낮춘다. 각 단계마다 볼록 정점(Convex Vertex)만을 판별하는 조건을 이용하여 한 번의 스캔으로 온전한 Convex Set이 구한다. 알고리즘 초기에 점집합의 정렬이 필요한데, 이때 걸리는 시간이 알고리즘 전체 동작시간의 대부분을 차지하는 만큼, 특성에 맞는 방법을 사용하여 빠르게 정렬하였다. 일반적인 상황을 가정하고 점집합을 랜덤하게 구성하여 실험하였으며 기존의 알고리즘에 비해 약 두 배의 속도 향상이 있음을 확인하였다.
Recently, Image processing has been used in many areas. In the image processing techniques that a lot of research is tracking of moving object in real time. There are a number of popular methods for tracking an object such as HOG(Histogram of Oriented Gradients) to track pedestrians, and Codebook to subtract background. However, object extraction has difficulty because that a moving object has dynamic background in the image, and occurs severe lighting changes. In this paper, we propose a method of object extraction using depth image and color image features based on ROI(Region of Interest). First of all, we look for the feature points using the color image after setting the ROI a range to find the location of object in depth image. And we are extracting an object by creating a new contour using the convex hull point of object and the feature points. Finally, we compare the proposed method with the existing methods to find out how accurate extracting the object is.
In this paper, we suggest an improved Convex Hull algorithm considering sort in plane point set. This algorithm has low computational complexity since processing data are reduced by characteristic of extreme points. Also it obtains a complete convex set with just one processing using an convex vertex discrimination criterion. Initially it requires sorting of point set. However we can't quickly sort because of its heavy operations. This problem was solved by replacing value and index. We measure the execution time of algorithms by generating a random set of points. The results of the experiment show that it is about 2 times faster than the existing algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.