• Title/Summary/Keyword: 본마이즈분포

Search Result 1, Processing Time 0.013 seconds

Modelling Missing Traffic Volume Data using Circular Probability Distribution (순환확률분포를 이용한 교통량 결측자료 보정 모형)

  • Kim, Hyeon-Seok;Im, Gang-Won;Lee, Yeong-In;Nam, Du-Hui
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.4
    • /
    • pp.109-121
    • /
    • 2007
  • In this study, an imputation model using circular probability distribution was developed in order to overcome problems of missing data from a traffic survey. The existing ad-hoc or heuristic, model-based and algorithm-based imputation techniques were reviewed through previous studies, and then their limitations for imputing missing traffic volume data were revealed. The statistical computing language 'R' was employed for model construction, and a mixture of von Mises probability distribution, which is classified as symmetric, and unimodal circular probability were finally fitted on the basis of traffic volume data at survey stations in urban and rural areas, respectively. The circular probability distribution model largely proved to outperform a dummy variable regression model in regards to various evaluation conditions. It turned out that circular probability distribution models depict circularity of hourly volumes well and are very cost-effective and robust to changes in missing mechanisms.