• Title/Summary/Keyword: 복합 사이클

Search Result 198, Processing Time 0.025 seconds

Technical Review and Analysis of Ramjet/Scramjet Technology I. Ramjet Engine (Liquid Ramjet, Ducted Rocket) (램제트/스크램제트의 기술동향과 소요기술 분석 I. 램제트 엔진(액체램제트, 덕티드로켓))

  • Sung Hong-Gye;Yoon Hyun-Gull
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.72-86
    • /
    • 2006
  • A technical review of current ramjet propulsion is presented. In addition to summarize the current status of ramjet technology, new key techniques like Boosting technique easily adapting total impulse of booster, flame stabilization technique with minimized ramjet combuster length, variable nozzle-inner-surface technique realizing wide flight-envelop, and thermal protection technique for long operating time are identified. Actually various Ramjet propulsion technology has been matured and expanding to both military and combined cycle application. Yet many opportunities remain to be challenged by future generations of explorers to utilize s typical ramjet propulsion system for multi-purpose(multi-platform and multi-target) missiles, for example, American JSSCM and Russian Yakhont missiles, improving both reliability of techniques and downsizing development cost of new propulsion system.

Study of Cure Kinetics of Vacuum Bag Only Prepreg Using Differential Scanning Calorimetry (시차주사열량계를 이용한 진공백 성형 프리프레그의 경화 거동 연구)

  • Hyun, Dong Keun;Lee, Byoung Eon;Shin, Do Hoon;Kim, Ji Hoon
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.44-49
    • /
    • 2020
  • The cure kinetics of carbon fiber-reinforced prepreg for Vacuum Bag Only(VBO) process was studied by differential scanning calorimetry (DSC). The total heat of reaction (ΔHtotal = 537.1 J/g) was defined by the dynamic scanning test using prepregs and isothermal scanning tests were performed at 130℃~180℃. The test results of isothermal scanning were observed that the heat of reaction was increased as the temperature elevated. The Kratz model was applied to analyze the cure kinetics of resin based on the test results. To verify the simulation model, the degree of cure from panels using different cure cycles were compared with the measurement. The simulation model showed that the error against the experimental value was less than 3.4%.

Development of High Efficiency Cycle by Combining Double-Effect with Single-Effect Absorption Chiller Systems (이중 효용과 일중 효용을 복합한 다단 재생 고효율 흡수식 냉동 사이클 개발)

  • Yun, Sang Kook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.7
    • /
    • pp.360-365
    • /
    • 2017
  • Recently, development efforts of triple-effect absorption chiller have been increased in order to improve the efficiency of double-effect absorption chiller. However, triple-effect absorption chiller has some disadvantages, including high corrosion characteristic of LiBr solution at high temperature of $200^{\circ}C$. Moreover, it is necessary to develop new components for operation under high pressure of 2 bars even though COP is increased to 1.6 or 1.7. The objective of this study was to introduce a new system by combining double effect absorption chiller with single effect absorption chiller with multi-generators using bypass flow of LiBr dilute solution to $3^{rd}$ generator to overcome the disadvantages of triple-effect chiller and improve energy efficiency. Results indicate that the new absorption cycle had a much higher efficiency than double-effect chiller system, showing significant improvement when bypass solution flow rate of 25% was applied to the $3^{rd}$ generator using the main dilute solution of the absorber. The COP of the new chiller system was found to be 1.438, which was 21.7% higher than that (1.18) of the present double-effect system. The COP was decreased when solution by-pass rate to the $3^{rd}$ generator was increased. In addition, lower cooling water temperature caused higher COP. Therefore, the multi-generator system with by-pass solution might be an excellent chiller alternative to triple-effect absorption chiller with higher efficiency.

Characteristics on Combustion Mode in Dual Mode Scramjet Engine (이중모드 스크램제트 엔진의 연소모드 특성)

  • Namkoung, HyuckJoon;Shim, ChangYeul;Kim, SunYong;Lee, MinSoo;Park, JooHyon;Kim, DongHwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.330-335
    • /
    • 2017
  • Recently many studies have been made for the development of propulsion system with wide range flight from supersonic to hypersonic. Dual Mode scramjet engine as a hybrid cycle with advantage of ramjet and scramjet has one combustor. It works under the ramjet mode (subsonic combustion) and scramjet mode (supersonic combustion) respectively. In this study, Experimental results of hot firing tests of dual scramjet engine designed on the condition of Mach 3.5~6 as a flight Mach number are discussed. The tests were carried out on a ground test bench under free stream condition of Mach 6 at 27.6km altitude. In the tests, the adopted design and technological solutions were verified and efficient operation of the dual mode ramjet engine with Kerosene combustion during 5 seconds was demonstrated.

  • PDF

$SnO_2$ 나노 입자가 분산된 Poly(methylmethacrylate) 박막 층을 사용하여 제작한 유기 쌍안정성 소자의 전기적 성질

  • Gwak, Jin-Gu;Yun, Dong-Yeol;Jeong, Jae-Hun;Lee, Dae-Uk;Son, Dong-Ik;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.210-210
    • /
    • 2010
  • 저항 구조를 가진 유기 쌍안정성 소자는 비휘발성 기억 소자 중에서 구조가 간단하고 제작비용이 저렴하며 플렉시블이 용이한 장점 때문에 많은 연구가 진행되고 있다. 유기물/무기물 복합재료를 사용한 유기 쌍안정성 소자 제작에 대한 연구는 많이 진행되어 왔지만, 넓은 에너지 밴드 갭을 가진 $SnO_2$ 나노 입자가 삽입된 고분자 박막을 기반으로 제작한 유기 쌍안정성 소자에 대한 연구는 상대적으로 미흡하다. 본 연구에서는 Poly(methyl methacrylate) (PMMA) 박막 안에 분산된 $SnO_2$ 나노 입자를 사용하여 제작한 유기 쌍안정성 소자의 전기적인 특성을 관찰하였다. 소자를 제작하기 위해 나노 입자의 전구체인 Tin 2-ethylhexanoate (95%) 2.4 mmol을 dibutyl ether (99.3%) 10 ml에 용해시킨 후, 용매열 화학적 방법을 사용하여 용매 안에서 $SnO_2$ 나노 입자를 합성하였다. 용매 안에 들어있는 1 wt%의 $SnO_2$ 나노 입자와 100 mg의 PMMA를 2 ml의 클로로벤젠에 용해하여 고분자 용액을 제작하였다. 하부 전극 역할을 하는 indium tin oxide가 증착된 유리 기판 위에 고분자 용액을 스핀 코팅하고, 열을 가해 용매를 제거하여 $SnO_2$ 나노 입자가 분산되어 있는 PMMA 박막을 형성하였다. 그 위에 Al 전극을 증착하여 기억 소자를 완성하였다. 제작된 유기 쌍안정성 소자의 전류-전압 (I-V) 측정 결과에서는 동일한 전압에서 서로 크기가 다른 전류가 흐르는 I-V 곡선의 히스테리시스 특성이 나타났다. 그러나 $SnO_2$ 나노 입자가 없는 PMMA 박막으로 형성된 유기 쌍안정성 소자에서는 I-V 곡선의 히스테리시스 특성이 나타나지 않았다. 따라서 PMMA 박막 안에 삽입된 $SnO_2$ 나노 입자가 유기 쌍안정성 소자의 메모리 효과에 결정적인 영향을 준 것을 알 수 있었다. 전류-시간 측정 결과에서는 소자의 ON/OFF 비율이 시간에 따라 큰 변화 이 없이 1000 사이클 이상 지속적으로 유지 하고 있음을 보여 줌으로써 유기 쌍안정성 소자를 장시간 사용할 수 있음을 나타내 주었다.

  • PDF

Modeling on Ratio-Dependent Three-Trophic Population Dynamics Responding to Environmental Impacts (외부 환경영향에 대한 밀도비 의존 3영양단계의 개체군 동태 모델)

  • Lee, Sang-Hee;Choi, Kyung-Hee;Chon, Tae-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.304-312
    • /
    • 2004
  • The transient dynamics of three-trophic populations (prey, predator, and super predator) using ratio-dependent models responding to environmental impacts is analyzed. Environmental factors were divided into two parts: periodic factor (e.g., temperature) and general noise. Periodic factor was addressed as a frequency and bias, while general noise was expressed as a Gaussian distribution. Temperature bias ${\varepsilon}$, temperature frequency ${\Omega}$, and Gaussian noise amplitude ${\`{O}}$ accordingly revealed diverse status of population dynamics in three-trophic food chain, including extinction of species. The model showed stable limit cycles and strange attractors in the long-time behavior depending upon various values of the parameters. The dynamic behavior of the system appeared to be sensitive to changes in environmental input. The parameters of environmental input play an important role in determining extinction time of super predator and predator populations.

Design Optimization and Analysis of a RBCC Engine Flowpath Using a Kriging Model Based Genetic Algorithm (Kriging 모델기반 유전자 알고리즘을 이용한 RBCC 엔진 유로 최적설계 및 분석)

  • Chae, Sang-Hyun;Kim, Hye-Sung;Yee, Kwan-Jung;Oh, Se-Jong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.51-62
    • /
    • 2017
  • A design optimization method is applied for the flow path design of RBCC engine, an important factor for the determining the propulsion performance operating at air-breathing mode. A design optimization was carried out to maximize the specific impulse of the RBCC engine by using a genetic algorithm based on the Kriging model. Results are analyzed using ANOVA and SOM. Design conditions of ramjet and scramjet mode are selected as Mach number 4 at 20 km altitude and Mach number 7 at 30 km, respectively. The optimized design presents that the specific impulse is increased by 7% and 10% on each condition than the baseline design.

A Study of Case Studies on Craft and Design Convergence Education Programs -Focus on Kookmin University 「TeamTeam Class」 Curriculums- (디자인·공예 융합 교육 프로그램 사례연구 -국민대학교 「팀팀Class」를 중심으로-)

  • Park, Jung-won
    • Journal of Digital Convergence
    • /
    • v.19 no.8
    • /
    • pp.327-335
    • /
    • 2021
  • The tendency of the current times require education to focus on convergence, and the same applies to the essence of ceramics and design base imagination and creativity. For effective integration, a wide range of experimentations is required both in terms of academic and methodic approaches. This study analyzes the [TeamTeam Class] curriculum, converging ceramics with design initiated in the second semester (autumn semester) of 2020. Through reference materials on ceramics and design convergence education, it was possible to classify the following 5 categories: Subject, Method, Management, space and communication. The aim of the study is to find resolutions to overcome existing issues and problems in search of more effective methods. Although this study is based on convergence education, [TeamTeam Class] at Kookmin University, I hope to extend it further to also consider education after COVID-19.

The Effect of the QR Code Commission Rate on Commercial Banks in China (QR코드 수수료율이 중국 상업은행에 미치는 영향)

  • Zhu, Yongjie;Jin, Shanyue
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.99-105
    • /
    • 2022
  • In China, with the rise of third-party payments such as WeChat Pay and Alipay, the traditional business of banks has been greatly affected. Banks can encourage and expand QR code payments to merchants. Therefore, it is meaningful to analyze and study the QR code work of banks. The purpose of this study is to analyze the effect of the execution of the zero-rate of the comprehensive payment QR code combined with the payment cycle and Funds Transfer Pricing (FTP) on commercial banks in China. Based on the manually collected customer data of Chinese commercial banks, this paper conducts a case analysis combined with the calculation method of financial indicators. As a result of the study, it was found that commercial banks need to continue to implement the policy as the advantages of introducing the integrated QR code fee rate 0 policy are greater than the disadvantages. This paper provides feasible suggestions on how to quickly occupy the offline payment market for commercial banks, which has guiding significance for commercial banks' marketing decisions. Presently, there are few studies on the zero-rate subsidy policy implemented by Chinese commercial banks.

The Electrochemical Properties of Sponge Type S@ZIF67/rGO as the Cathode Material for Lithium Sulfur Batteries (리튬 황 전지용 Sponge 형태의 S@ZIF 67/rGO 양극재의 전기화학 특성 분석)

  • Chaelin Seo;Sunghoon Kim;Wook Ahn
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2024
  • In this study, ZIF67/rGO was used to minimize the battery life degradation due to the insulating properties of sulfur and the elution of lithium polysulfide. ZIF67 wrapped in rGO creates more space within the carbon sponge and can hold a large amount of sulfur. The sulfur@ZIF67/rGO composite was synthesized and prepared as a sponge to enhance the sulfur retention capacity. The result showed a high initial capacity, with a value of about 1093 mAh g-1 and a capacity retention rate of 84% after 100 cycles. The high interaction with sulfur through the complexation of cobalt and carbon confirmed that ZIF67/rGO exhibits high performance as a carrier for sulfur, the anode active material of lithium-sulfur batteries, and the high initial capacity and improved capacity retention rate were confirmed.