• Title/Summary/Keyword: 복합주조

Search Result 186, Processing Time 0.024 seconds

Effect of Solidification Conditions and Heat Treatment on the Mechanical Properties of the $Al-CuAl_2$ Eutectic Composite (Al-$CuAl_2$ 공정복합재료의 기계적 성질에 미치는 응고조건과 열처리의 영향)

  • Lee, Hyun-Kyu;Lee, Ju-Hong;Hong, Jong-Hwi
    • Journal of Korea Foundry Society
    • /
    • v.10 no.4
    • /
    • pp.332-341
    • /
    • 1990
  • The structure and tensile properties of the unidirectionally solidified Al-33wt.%Cu alloy have been investigated. Casted Al-33wt.%Cu alloy was unidirectionally solidified with rates (R) between 1㎝/hr and 24cm/hr maintaining the thermal gradient(G) at solid-liquid interface, $32^{\circ}C/cm$ and $21^{\circ}C/cm$. The entectic struture was varied according to the growth condition(G/R radio). When G/R ratio was larger than $8.5{\times}10^3$ $^{\circ}C/cm^2/sec$ the lamellar structure was formed, and colony structure was formed when G/R ratio was smaller than $8.5{\times}10^3$ $^{\circ}C/cm^2/sec$. The interlamellar spacing(${\gamma}$) in the above alloy system was vaired with the growth rate(R) According to "${\gamma}^2{\cdot}R=8.8{\times}10^{-11}cm^2/sec$" relationship. The yield stress (${\sigma}$0.001) and UTS for samples in the as-grown condition increased with the interlamellar spacing decrease and the values corresponding to colony structure are lower than those corresponding to amellar structure with the same lamellar spacing. The yield stress for samples in aged condition did not change with the interlamellar spacing.

  • PDF

Manufacturing and Damping Properties of Al-Si/Gr. Composite using extruded Al/Gr. Composite (Al/흑연 압출재를 이용한 Al-Si/흑연 복합재료 제조와 감쇠능)

  • Park, Hun-Berm;Kwon, Hyuk-Moo
    • Journal of Korea Foundry Society
    • /
    • v.21 no.2
    • /
    • pp.119-126
    • /
    • 2001
  • Al/15%Gr. composite have been manufactured by mixing, compacting, and extruding aluminium powder and graphite powder. Then, Al-6%Si/x%Gr., Al-12%Si/x%Gr., and Al-18%Si/x%Gr.(x: 0, 2, 4, 6, 8) composites have been manufactured by remelting the extruded materials(Al/15%Gr.), Al-33.3%Si alloy, and Al ingot, etc. We conducted experiments to chracterize the microstructure, and damping properties and hardness. The result of microstructure experiment on Al-x%Si/y%Gr. composites reveals the good dispersion of graphite. As to Al-Si/y%Gr. composites, the more the graphite contents, the less the tensile strength. And the tensile strength varied according to contents of Si: with its highest value in Al-18%Si/y%Gr. composites and lowest in Al-6%Si/y%Gr. composites. As to Al-x%Si/y%Gr. composites, the more the contents of graphite, the more the vibration damping properties. And we can get the highest vibration damping rate in Al-12%Si/y%Gr. composites which matrix structure is an eutectic component.

  • PDF

High Strain Rate Superplasticity of Whisker Reinforced Aluminum Alloy Matrix Composites Fabricated by Squeeze Casting (용탕단조법에 의한 휘스커강화 Al합금기 복합재료의 고속초소성)

  • Lim, Suk-Won;Nishida, Yoshinori
    • Journal of Korea Foundry Society
    • /
    • v.21 no.6
    • /
    • pp.359-365
    • /
    • 2001
  • The superplastic behavior of whisker reinforced aluminum alloy matrix composites fabricated by squeeze casting as one of high pressure routes was investigated. The preforms of ${\alpha}-Si_3N_4$ and ${\beta}-SiC$ whiskers without any binder as a reinforcement were used. The matrix materials were 2024 and 7075 aluminum alloys. For the purpose of optimum superplastic condition, respectively, the whiskers volume fraction, extrusion temperature, tensile test temperature and initial strain rate were changed. Fracture surface of tested specimens were observed by SEM. By the results, it became possible to produce superplastic composites by applying only a hot extrusion process to composites obtained by the squeeze casting. The superplastic composites developed are ${\alpha}-Si_3N_4w/7075$, ${\alpha}-Si_3N_4w/2024$ and ${\beta}-SiCw/2024$ systems at high strain rate.

  • PDF

A Study on the Fatigue Crack Propagation Behavior of $Al_2O_3/AC4C$ Composites Made by Squeeze Casting Process (용탕단조법으로 제조된 $Al_2O_3/AC4C$ 복합재료의 피로균열 전파거동에 관한 연구)

  • Yeo, In-Dong;Lee, Chi-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.15 no.4
    • /
    • pp.388-396
    • /
    • 1995
  • This study has been conducted with the purpose of examining the fatigue crack growth characteristics of $Al_2O_3$ short fiber reinforced aluminum matrix composites made by squeeze casting process with different applied pressure and binder amount. Fatigue crack growth experiments have been performed under constant load amplitude method with a fixed load ratio. The rate of crack propagation was decreased with binder amount as well as applied pressure. Also fatigue crack growth path in matrix was changed from flat to rough mode with an increase of applied pressure. In the composites, fatigue crack was propagated to interface between matrix and reinforcement at 10MPa, but it was propagated to reinforcement at 20MPa. The major reason of thee result was considered that interfacial bonding force and microstructure of matrix were improved due to an increase of applied pressure. Localized ductile striation in the composites was observed at low growth rate region and such a phenominon was remarkable with an increase of applied pressure. At high growth rate region, the propensity of fracture appearance was changed from interfacial debonding to reinforcement fracture with an increase of applied pressure.

  • PDF

Microstructure of Rheocompocast Al-Cu-Ti/SiCp composite (Rheocompocasting한 Al-Cu-Ti/SiCp 복합재료의 조직)

  • Yoon, Yeo-Chang;Choe, Jung-Chul;Hong, Sung-Kil
    • Journal of Korea Foundry Society
    • /
    • v.15 no.4
    • /
    • pp.368-376
    • /
    • 1995
  • An Al-composite material was fabricated with using the rheocompocasting process and the microstructure of the Al-Cu/SiCp composite material was investigated depending on the stirring times and the amount of Ti additions. The distribution of SiC dispersion shows the good result at the stirring time of 30 min. The degree of microdistribution of the $Al_2Cu$ and SiCp is improved when the amount of Ti addition is increased. At the compositon of 0.3%Ti, the primary solid is the compound of $Al_3Ti$ and no exist of the SiCp and $Al_2Cu$ phase around the primary $Al_3Ti$. In the process of compositization, SiCp is found at the primary and final solid parts and is found at the final solid part after remelting. $Al_2Cu$ and SiCp are distributed around and outside of dendrite or independently after remelting, which is different from the process of compositization.

  • PDF

A Study on Unidirectionally Solidified Ni-base Eutectic Composites (일방향응고(一方向凝固)시킨 Ni기(基) 초내열(超耐熱) 공정복합재료(共晶複合材料)에 관(關)한 연구(硏究))

  • Lee, Joo-Hong;Hong, Yeong-Hwan;Hong, Jong-Hwi
    • Journal of Korea Foundry Society
    • /
    • v.8 no.4
    • /
    • pp.437-445
    • /
    • 1988
  • The effect of interlamellar spacing on microstructural stability at high temperature was studied for unidirectionally solidified ternary $Ni\;/\;Ni_3Al-Ni_3$ Nb and binary $Ni-Ni_3Nb$ eutectic composite. The interlamellar spacing of both alloy systems were varied with the growth rate according to $"{\lambda}^2R=constant"$ relationship. As a result of isothermal heat treatments at high temperature it was considered that coarsening of lamellar structure was due to concentration gradient between the tip with a relatively small radius of curvature and the side of the thick lamellae with a larger radius of the opposite sign. Fault density was increased as the interlamellar spacing decreased. Therefore it is also considered that the higher coarsening rate of the specimen with the smaller interlamellar spacing was due to higher fault density. And the diference of coarsening rate between $Ni\;/\;Ni_3Al-Ni_3Nb$ and $Ni-Ni_3Nb$ eutectic composites was not observed when the interlamellar spacing was similar in size. This means that the presence of ${\gamma}'$ in ${\gamma}\;/\;{\gamma}'\;-{\delta}$ eutectic had no b arrier effect to diffusion through the ${\gamma}$ matrix.

  • PDF

Microstructural Characteristics of SiC Particle Reinforced Aluminum Alloy Composite by Squeeze Casting (Squeeze Casting에 의한 SiC 입자강화 Al합금기 복합재료의 미세조직 특성)

  • Kim, Sug-Won;Woo, Kee-Do;Han, Sang-Won
    • Journal of Korea Foundry Society
    • /
    • v.15 no.6
    • /
    • pp.566-573
    • /
    • 1995
  • In this study, the microstructural characteristics such as primary silicon, eutectic silicon, $SiC_p$ dispersion behavior, compound amount and Si solubility in $Al/SiC_p$ composite fabricated by the squeeze casting under various conditions were investigated systematically. As applied pressure(MPa) increases, cooling rate and compound amount are increased. In gravity casting, the cooling rate of hypereutectic composite is slower than of hypoeutectic composite by exothermic reaction of primary Si crystallization. But the cooling rate of hypereutectic composite is faster than that of hypoeutectic composite fabricated by same applied pressure, because amount of primary Si crystallization in hypereutectic composite was decreased, on the contrary, primary ${\alpha}-Al$ in hypoeutetic composite was increased due to increase of Si solubility in matrix by applied pressure. The crystalized primary silicon in hypereutectic composite fabricated by squeeze casting become more fine than that in non-pressure casting This is because mush zone became narrow due to increase of Si content of eutectic composition by pressure and time for growth of primary silicon got shorter according to applied pressure. It is turned out that eutectic temperature and liquidus are decreased by the increasing of squeeze pressure in all the composite due to thermal unstability of matrix owing to increasing of Si solubility in matrix by the increasing of applied pressure, as indicated in thermal anaiysis(DSC) results.

  • PDF

Microstructure and Mechanical Properties of Squeeze Cast AZ91 Mg/Al Borate Whisker Composites (용탕단조법으로 제조된 AZ91 Mg/Al Borate 휘스커 복합재료의 미세조직 및 기계적 특성)

  • Kim, Kwang-Chun;Cho, Young-Su;Lee, Sung-Hak;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.16 no.6
    • /
    • pp.537-549
    • /
    • 1996
  • This study aims at investigating the correlation of microstructure and mechanical properties of the AZ91 Mg/Al borate whisker composites fabricated by squeeze csting technique with a variation of applied pressure. Microstructure observation and in-situ fracture tests were conducted on the composites to identify the microfracture process. Detailed microstructural analyses indicated that the grain refinement could be achieved with applied pressure and the little change in volume fraction on reinforcing whiskers could be carried out. It was also found clearly from in-situ observation of crack initiation and propagation that in the composite processed by the lower applied pressure, microcracks were initiated earily at whisker/matrix interfaces, thereby resulting in the drop in strength. In the composite processed by the higher applied pressure, on the other hand, planar slip lines were well developed in the matrix, and then propagated through whiskers without whisker/matrix decohesion. Thus, the effect of the applied pressure on microstructure and mechanical properties can be explained by grain refinement, increased amounts of reinforcements, and improvement of whisker/matrix interfacial strength as the applied pressure in increased.

  • PDF

Fabrication of $Al_2O_3/Al$ Composite Materials by Mashy State Forming and its Hot Extrusion Process (반용융가공에 의한 $Al_2O_3/Al$ 복합재료의 제조 및 열간압출공정)

  • Kang, Chung-Gil;Kang, Sung-Soo
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.248-258
    • /
    • 1993
  • A semi-solid alloy in which solid and liquid phase are co-existing is obtained by stirring of A17075 molten metal. A semi-solid alloy is dependent on the corresponding temperature within the solid-liquid range, and the process parameters should be controlled accurately to obtain the homogeneous semisolid alloy. The fabrication possibility of fiber-reinforced aluminum alloy containing $Al_2O_3$ short fibers with vigorous agitation of short fibers were obtained by control of stirring time, solid fraction and impeller speed in extrusion billet fabrication processes. The microstructure to extrusion billet fabricated by low pressure casting was investigated for fiber dispersion state. The relationship between the extrustion force and velocity at hot extrustion, the flow strain and extrusion ratio were theoretically described. The surface defects with lubricants and without lubricant after hot extrusion were investigated. The composites materials after hot extrusion were measured by vickers hardness with extrusion ratio. It has become clear that the secondary working such as hot extrusion was very useful to obtained improved the mechanical properties of metal matrix composites.

  • PDF

A Study on the Wear Characteristics of SiC Particle Dispersed Composites by Rheo-Compocasting Method (Rheo-compocasting법에 의한 SiC입자분산 복합재료의 마모특성에 관한 연구)

  • Kwak, Hyun-Man;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.238-247
    • /
    • 1993
  • Microstructure, hardness and wear characteristics of $SiC_p/Al-6.5wt%Si-1.7wt%Mg$ alloy composites fabricated by the method of rheo-compocasting and hot pressing are investigated in this study. The dispersion of SiC particles in the composites is homogeneous and the hardness improves as additional amount increases. The wear amount of the matrix metal increases highly as wear rates increase, for the wear mechanism changes from adhesive wear to melt wear, and the matrix metal was coated on the surface of revolving disc and its weight increases. In the 5vol% composites, Fe is adhered on the surface of specimen by the projection of the dispersed hard SiC particles which have net-work structure and the coating layer is about $300{\mu}m$. But in the composite more than 20vol%, the wear amount of composite decreases because the SiC particles which have superior hardness, wear resistance and heat resistance properties resist wear, the abrasive wear turn out predominant wear mechanism and so the wear amount of revolving disc increases.

  • PDF