• Title/Summary/Keyword: 복합재 침수 실험

Search Result 4, Processing Time 0.016 seconds

An Experimental Study on the Mechanical Properties of High Modulus Carbon-Epoxy Composite in Salt Water Environment (염수 환경에 노출된 고강성 탄소/에폭시 복합재의 물성치 변화 연구)

  • Moon, Chul-Jin;Lee, Cheong-Lak;Kweon, Jin-Hwe;Choi, Jin-Ho;Jo, Maeng-Hyo;Kim, Tae-Gyeong
    • Composites Research
    • /
    • v.21 no.6
    • /
    • pp.1-7
    • /
    • 2008
  • The main objective of this study is to investigate the effect of salt water on the mechanical properties of a high modulus carbon-epoxy composite. Specimens were made of a carbon-epoxy composite UPN139B of SK Chemical and tested under inplane tension and shear after 0, 1, 3, 6, 9, and 12 months immersion in 3.5% salt water. Acceleration technique such as temperature elevation was not used. The tensile strengths and modulli in fiber and matrix direction did not show any remarkable degradation until 12 months immersion. In contrast to the tensile properties, shear strength and modulus started to gradually decrease up to about 10% of values of dry specimens after 12 months immersion. It was confirmed through the test that the material UPN139B can be an effective material for the shell structures in salt water to resist against the external pressure buckling because of the high fiber directional modulus and corrosion resistance.

An Experimental Study on the Mechanical Properties of Carbon-Epoxy Composites in Salt Water Environment (염수 환경에 의한 탄소/에폭시 복합재의 물성치 변화 연구)

  • Hur, Seong-Hwa;Kim, Jeong-Hee;Kim, Hong-Seok;Kweon, Jin-Hwe;Choi, Jin-Ho;Cho, Jong-Rae;Cho, Yoon-Shik
    • Composites Research
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • The main objective of this study is to investigate the effect of salt water on the mechanical properties of a carbon-epoxy composite material. Specimens were made of a carbon-epoxy composite USN125 and tested under inplane tension and shear after 0, 0.5, 1, 2, 3, 6, 9, and 12 months immersion in 3.5% salt water. Waterproof painting and acceleration technique were not applied. The tensile strengths and moduli in fiber and matrix directions did not show any remarkable degradation until 12 months immersion. In contrast to the tensile properties, shear strength and modulus started to degrade from the early stage of the immersion time and gradually decreased to 36% and 46% of dry values, respectively, after 12 months immersion.

Evaluation of Durability for Glass fabric/Phenolic Composites under Salt Water Environment (염수환경에 노출된 유리섬유직물/페놀 복합재의 내구성 평가)

  • Yoon, Sung-Ho
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.27-34
    • /
    • 2005
  • Salt water spray and immersion tests were experimentally conducted for over 6 months to investigate the durability of glass fabric/phenolic composites under salt water environment. Mechanical properties such as tensile properties, flexural properties, and shear properties were evaluated and thermal analysis properties such as storage shear modulus, loss shear moduls, and tan 6 were obtained through a DMA. A change in chemical structures was analyzed through a FTIR. According to the results, mechanical properties and thermal analysis properties were sensitive to salt water environment and these properties began to degrade in increasing in exposure times. However, tensile and flexural moduli started to decrease and then slightly increase as increasing in exposure times due to plasticization and crosslinking in matrix as well as physical swelling in composites. Beyond a certain exposure times, these properties began to decrease as further increasing in exposure times. Also the shape and location of peaks in FTIR curves were insensitive to exposure times, but the intensity of peaks would be. finally we found that the durability of glass fabric/phenolic composites were affected on salt water immersion environment rather than salt water spray environment.

Analysis of the integral fuel tank considering hygrothermal enviornmental factors (열습도 환경요소를 고려한 일체형 복합재 연료탱크의 해석)

  • Moon, Jin-Bum;Kim, Soo-Hyun;Kim, Chun-Gon
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.64-69
    • /
    • 2007
  • Matrix dominant properties of composites are largely degraded under harmful environments such as temperature and humidity. Therefore we should consider the harmful environmental factors in the design of an UAV integral fuel tank subjected to high temperature and high humidity. The harmful environment experiment was performed for carbon/epoxy composites made of a unidirectional prepreg USN175B, and a plain woven fabric prepreg WSN3. The immersion experiment was performed under $90^{\circ}C$. The specimens were tested when the weight gam of specimen was saturated. The specimens were tested under $74^{\circ}C$ to obtain tensile and inplane shear properties. The results showed that the matrix dominant properties were extremely degraded by hygrothermal environment. To consider the variability of load, the anti-optimization method was applied. By using this method, the worst load case was found by comparing the load convex model and stability boundary. The stability boundary was obtained by analysis of the integral wing fuel tank of UAV using degraded properties. To do this, it was known that the worst load case of the integral wing fuel tank was the hovering mode load case.