• Title/Summary/Keyword: 복합재 적층링

Search Result 20, Processing Time 0.025 seconds

Identification of Impact Damage in Smart Composite Laminates Using PVDF Sensor Signals (고분자 압전센서 신호를 이용한 스마트 복합적층판의 충격 손상 규명)

  • Lee, Hong-Young;Kim, In-Gul;Park, Chan-Yik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.51-59
    • /
    • 2004
  • An experimental procedure to identify failure modes of impact damage using sensor signals and to analyze their general features is examined. A series of low-velocity impact tests from low energy to damage-induced high energy were performed on the instrumented drop weight impact tester to monitor the stress wave signals due to failure modes such as matrix cracking, delamination, and fiber breakage. The wavelet transform(WT) and Short Time Fourier Transform(STFT) are used to decompose the piezoelectric sensor signals in this study. The extent of the damage in each case was examined by means of a conventional ultrasonic C-scan. The PVDF sensor signals are shown to carry important information regarding the nature of the impact process that can be extracted from the careful signal processing and analysis.

Design of a Composite Flywheel Rotor for Energy Storage System (에너지 저장시스템용 복합재 플라이휠 로터의 설계)

  • 정희문;최상규;하성규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1665-1674
    • /
    • 1995
  • An optimum design has been performed to maximize specific energy (SED) of composite flywheel rotor for energy storage system. The flywheel rotor is assumed to be an axisymmetric thick laminated shell with a plane strain state for structural analysis. For the structural analysis the centrifugal force is considered and the stiffness matrix equation was derived for each ring considering the interferences between the rings. The global stiffness matrix was derived by integrating the local stiffness matrix satisfying the conditions of force and displacement compatibilities. Displacements are then calculated from the global stiffness matrix and the stresses in each ring are also calculated. 3-D intra-laminar quadratic Tsai-Wu criterion is then used for the strength analysis. An optimum procedure is also developed to find the optimal interferences and lay up angle to maximize SED using the sensitivity analysis.

Experimental and Numerical Studies on Composite Tubes for the Energy Absorber of High-speed Train (복합재 튜브를 이용한 고속 열차의 에너지 흡수장치에 대한 실험 및 수치해석 연구)

  • Nguyen, Cao-Son;Jang, Hong-Kyu;Shin, Jae-Hwan;Son, Yu-Na;Kim, Chun-Gon
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • This paper presents an experimental and numerical study on composite tubes for the energy absorber of the high-speed train. The purpose of the experimental study is to find out which lay-up is the best lay-up for the energy absorber. Four lay-ups were tested using quasi static method: $[0/45/90/-45]_4$, $[0]_{16}$, $[0/90]_8$, $[0/30/-30]_5$. Two triggering methods were used to create initial damage and guarantee the progressive collapse mode: bevel edge and notch edge. As a result, $[0/45/90/-45]_4$ lay-up was find out the best lay-up among the laminates being tested. In the numerical study, a parametric analysis was done to find out the most proper way to simulate the quasi static test of a composite tube using LS-DYNA program. A single composite tube was modeled to be crashed by a moving wall. Comparison between simulation and experiment was done. Reasonable agreement between experiment and analysis was obtained. Dealing with parameter TFAIL and the mass scaling factor, this parametric study shows the ability and the limitation of LS-DYNA in modeling the quasi static test for the composite tube.

Influence of Stiffness Coefficients on Optical Performance in Composite Optical Substrate (강성계수가 복합재 광학판 성능에 미치는 영향성 연구)

  • Kim, Kyung-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.762-769
    • /
    • 2017
  • The extensional stiffness in quasi-isotropic laminates is uniform in the radial direction, but the bending stiffness varies radially due to the stacking sequence. This paper addresses the directional dependency of the bending stiffness and its radial variation in three types of quasi-isotropic laminate reflectors consisting of unidirectional fiber composite materials (UDM) and randomly distributed composite materials (short fiber, RDM). The extensional stiffness and bending stiffness in optical reflectors using RDM are uniform, while the bending stiffness in those using UDM varies radially from 11% to 26%. Also, the stiffness sensitivity, such as the bend-twist or bend-torsion effect, due to the differences in the stiffness value in the composite, is large. These factors are problematic in the optical field requiring precision surfaces. Utilizing RDM might be one way to eliminate the presence of bending stiffness in composite mirror substrates.

Study of Optical Fiber Sensor Systems for the Simultaneous Monitoring of Fracture and Strain in Composite Laminates (복합적층판의 변형파손 동시감지를 위한 광섬유 센서 시스템에 관한 연구)

  • 방형준;강현규;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.58-67
    • /
    • 2003
  • To perform the realtime strain and fracture monitoring of the smart composite structures, two optical fiber sensor systems are proposed. The two types of the coherent sources were used for fracture signal detection - EDFA with FBG and EDFA with Fabry-Perot filter. These sources were coupled to EFPI sensors imbedded in composite specimens. To understand the characteristics of matrix crack signals, at first, we performed tensile tests using surface attached PZT sensors by changing the thickness and width of the specimens. This paper describes the implementation of time-frequency analysis such as short time Fourier transform (STFT) and wavelet transform (WT) for the quantitative evaluation of fracture signals. The experimental result shows the distinctive signal features in frequency domain due to the different specimen shapes. And, from the test of tensile load monitoring using optical fiber sensor systems, measured strain agreed with the value of electric strain gage and the fracture detection system could detect the moment of damage with high sensitivity to recognize the onset of micro-crack fracture signal.

The Study on Notch Strength Characteristics with Circular Hole Notch in A17075/CFRP Layered Composites (원공노치를 갖는 A17075/CFRP 적층 복합재의 노치강도 특성에 관한 연구)

  • 이제헌;김영환;박준수;윤한기
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.58-66
    • /
    • 2000
  • CARALL(Carbon fiber reinforced aluminum laminates) was fabricated with CFRP prepreg and A17075, using a autoclave. The mechanical properties of three samples i.e. A17075, CFRP and CARALL were also investigated as a function of size in circular holes. Theoretical approach into analysing mechanical behaviors near the circular hole notch was carried out to compare with experimental data, furthermore. By the adhesive bonding of A17075 to CFRP, abrupt strength reduction was prevented. From the consideration of modified point stress failure criterion, predicted results was well consistent with the experimental one.

  • PDF

The Application of AE for a Drilling Damage Process Monitoring in [0/90 0 ]s CFRP Composites ([0/90 0 ]s CFRP 복합재의 드릴작업손상과정 모니터링에 대한 AE의 적용)

  • Yun, Yu-Seong;Gwon, O-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1491-1498
    • /
    • 2000
  • In recent years, CFRP composite materials have been increasingly used in various fields of engineering because of a high specific strength and stiffness properties. Drilling is one of the most impo rtant cutting processes that are generally carried out on CFRP materials owing to the need for the structural integration. However, delamination are often occurred as one of the drilling damages. Therefore, there are needs studying for the relationships between CFRP drilling and delamination in order to avoid low strength of the structures and inaccuracies of the integration. In this study, AE signals and thrust forces were used for the evaluations of the delamination from a drilling process in [0/900]s CFRP materials. And the drilling damage processes were observed and measured by a real time monitoring technique with a video camera. From the results, we found that the relationships between the delamination from drilling and AE characteristics and drill thrust forces for [0/900]s CFRP composites. Also, we proposed the monitoring method for a visual analysis of drilling damages.

Simultaneous Sensing of Failure and Strain in Composites Using Optical Fiber Sensors (광섬유 센서를 이용한 복합재의 파손 및 번형률 동시 측정)

  • 방형준;강현규;홍창선;김천곤
    • Composites Research
    • /
    • v.14 no.5
    • /
    • pp.12-19
    • /
    • 2001
  • In aircraft composite structures, structural defects such as matrix cracks, delaminations and fiber breakages are hard to detect if they are breaking out in operating condition. Therefore, to assure the structural integrity, it is desirable to perform the real-time health monitoring of the structures. In this study, a fiber optic sensor was applied to the composite beams to monitor failure and strain in real-time. To detect the failure signal and strain simultaneously, laser diode and ASE broadband source were applied in a single EFPI sensor using wavelength division multiplexer. Short time courier transform and wavelet transform were used to characterize the failure signal and to determine the moment of failure. And the strain measured by AEFPI was compared with the that of strain gage. From the result of the tensile test, strain measured by the AEFPI agreed with the value of electric strain gage and the failure detection system could detect the moment of failure with high sensitivity to recognize the onset of micro-crack failure signal.

  • PDF

A Study on the Strength Characteristics and Failure Detection of Single-lap Joints with I-fiber Stitching Method (I-fiber 스티칭 공법이 적용된 Single-lap Joint의 강도 특성 및 파손 신호 검출 연구)

  • Choi, Seong-Hyun;Song, Sang-Hoon;An, Woo-Jin;Choi, Jin-Ho
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.317-322
    • /
    • 2021
  • When a complex load such as torsion, low-speed impact, or fatigue load is applied, the properties in the thickness direction are weakened through microcracks inside the material due to the nature of the laminated composite material, and delamination occurs. To prevent the interlaminar delamination, various three-dimensional reinforcement methods such as Z-pinning and stitching, and structural health monitoring techniques that detect the microcrack of structures in real time have been continuously studied. In this paper, the single-lap joints with I-fiber stitching process were manufactured by a co-curing method and their strengths and failure detection capability were evaluated. AE and electric resistance method were used for detection of crack and failure signal and electric circuit for signal analysis was manufactured, and failure signal was analyzed during the tensile test of a single-lap joint. From the experiment, the strength of the single lap joint reinforced by I-fiber stitching process was improved by about 44.6% compared to the co-cured single lap joint without reinforcement. In addition, as the single-lap joint reinforced by I-fiber stitching process can detect failure in both the electrical resistance method and the AE method, it has been proven to be an effective structure for failure monitoring as well as strength improvement.

Development of surface functional coating thin film utilizing combined processes of plasma activation surface treatment and nanoclay dispersion: In applications for transparent water vapor and oxygen barrier packaging films (플라즈마 활성화 표면처리 공정과 나노클레이 분산 적층 코팅을 이용한 표면 기능성 코팅 박막 개발: 수분 및 산소 차단성이 우수한 투명 포장재)

  • Nam Il Kim;Geug Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.3
    • /
    • pp.97-103
    • /
    • 2023
  • Barrier films for transparent packaging materials with excellent moisture barrier properties are prepared, utilizing a nanoclay dispersion coating layer formed after a pretreatment process of plasma activation surface treatment process under vacuum at room temperature. Attention is paid on optimizing the coupling additive through the appropriate crosslinking process and optimal dispersion process of the coating process to enhance adhesion. Analysis of the functional coating thin film shows that the water vapor transmission rate is less than 10 g/m2/24 hrs (ASTM F-1249) and the oxygen transmission rate is less than 30 cc/m2/24 hrs (ASTM D3985). It is shown that water barrier properties of coating thin film prepared in this study are greater than conventional untreated films by 10 times or more. The thickness of the transparent gas barrier film is within 0.1 mm, and the transparent gas barrier complex is implemented in two layers. In the study of PET thin film interface characteristics, FT-IR experimental analysis shows the reaction activity was optimized at RDS 1.125 %.