• Title/Summary/Keyword: 복합재료 파괴 메커니즘

Search Result 20, Processing Time 0.018 seconds

Toughening Mechanism and Mechanical Property in Thermoplastic Polyolefin-Based Composite Systems (폴리올레핀 복합재료의 파괴인성 메커니즘 및 기계적 특성)

  • Weon, Jong-Il
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.123-129
    • /
    • 2007
  • Toughening mechanisms and mechanical properties of three different polyolefin-based composite systems we studied using the tensile, Izod impact and double-notch lout-point-bending (DN-4PB) test, which is well known be an effective tool for probing the failure mechanism (s) around the subcritically propagated crack tip. Microscopy observations such as optical microscopy and transmission electron microscopy were carried out lot the test samples. A detailed investigation clearly shows that a variety of toughening mechanisms, i.e., shear yielding, craze, particle-matrix debonding, rubber particle cavitation, crack deflection and bifurcation, are observed around crack tip damage zone. These toughening mechanisms are responsible for the observed, improved fracture toughness. Based on this study, DN-4PB technique is sufficient to obtain the information needed to describe the fracture behavior of polyolefin-based composites as well as their corresponding toughening mechanisms.

Numerical Study of Lightweight FRP Bridge Deck System Induced by Thermal Stress by Fire (화재 발생 시 열응력에 의한 복합재료 교량 시스템의 거동에 관한 연구)

  • Jung, Woo-Young;Park , Hee-Kwang;Park , Moon-Ho;Lee , Hyung-Kil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.211-217
    • /
    • 2006
  • This analysis evaluated small and large temperature gradient effects on the FRP deck considering lightweight of FRP deck and ply orientations at the interface between steel girders and FRP deck. Finally, the analytical results shows the possible failure mechanism of FRP deck under various temperature changes and its corresponding index is suddenly varied depending on the rapid change of temperature on the deck plate.

Study of Failure Mode and Static Behavior of Lightweight FRP Truss Bridge Deck System (복합재료 트러스 교량시스템의 정적거동 및 파괴모드에 관한 해석적 연구)

  • Jung, Woo-Young;Lee, Hyung-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.511-520
    • /
    • 2007
  • There is a concern with worldwide deterioration of highway bridges, particularly reinforced concrete. The advantages of fibre reinforced plastic(FRP) composites over conventional materials motivate their use in highway bridges for replacement of structures. Recently, an FRP deck has been installed on a state highway, located in New York State, as an experimental project. In this paper, a systematic approach for analysis of this FRP deck bridge is presented. Multi-step linear numerical analyses have been performed using the finite element method to study the structural behavior and the possible failure mechanism of the FRP deck-superstructure system. Deck's self-weight and ply orientations at the interface between steel girders and FRP deck are considered in this study. From this research, the results of the numerical analyses were corroborated with field test results. Analytical results reveal several potential failure mechanism for the FRP deck and truss bridge system. The results presented in this study may be used to propose engineering design guideline for new and replacement FRP bridge deck structure.

A Study on Degradation and Recovery Mechanisms of Composites under the Moisture Environment (복합재료의 수분에 의한 열화 및 회복 메커니즘에 관한 연구)

  • Kim, Yun-Hae;Kim, Kook-Jin;Han, Joong-Won;Jo, Young-Dae;Bae, Sung-Youl;Moon, Kyoung-Man
    • Composites Research
    • /
    • v.21 no.2
    • /
    • pp.8-14
    • /
    • 2008
  • Decrease of strength in composite material is generally caused by water absorption. It makes fracture of material, and loss of money or human lives. The objective of this study is to investigate the causes of decrease in strength by water absorption. Mechanism of water absorption was supposed as three steps. This mechanism is consisted of absorption into resin, absorption between resin and surface treatment agent, and delamination between fiber and resin. Conditions of test were supplied differently; kinds of fiber and resin, immersion time etc. Both of reversible reaction and irreversible reaction occurred simultaneously. Most of decrease in strength was finished at 2.5% water absorption, and the strength was recovered. At 4% water absorption, most of decrease was caused by irreversible reaction, therefore, there was a tendency not to be recovered in strength.

Evaluation of tensile strengths and fracture toughness of plain weave composites (평직 CFRP 복합재료의 인장강도 및 파괴저항성 특성 평가)

  • Park, Soon-Cheol;Kang, Sung-Su;Kim, Gug-Yong;Choi, Jung-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.862-868
    • /
    • 2013
  • The mechanics of woven fabric-based laminated composites is complex. Then, many researchers have studied woven fabric CFRP materials but fracture resistance behaviors for composites have not been still standardized. It also shows the different behavior according to load and fiber direction. Therefore, there is a need to consider fracture resistance behavior in conformity with load and fiber direction at designing structure using woven CFRP materials. In this study, therefore, the tensile strength and resistance for plain-weave CFRP composite materials were investigated under various different angle condition(load to fiber angle: $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$). Tensile strength and fracture toughness tests were carried out under mode I transverse crack opening load by using compact tension specimens.

A Study on Microfailure Mechanism of Single-Fiber Composites using Tensile/Compressive Broutman Fragmentation Techniques and Acoustic Emission (인장/압축 Broutman Fragmentation시험법과 음향방출을 이용한 단섬유 복합재료의 미세파괴 메커니즘의 연구)

  • Park, Joung-Man;Kim, Jin-Won;Yoon, Dong-Jin
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.54-66
    • /
    • 2000
  • Interfacial and microfailure properties of carbon fiber/epoxy matrix composites were evaluated using both tensile fragmentation and compressive Broutman tests with an aid of acoustic emission (AE) monitoring. A polymeric maleic anhydride coupling agent and a monomeric amino-silane coupling agent were used via the electrodeposition (ED) and the dipping applications, respectively. Both coupling agents exhibited significant improvements in interfacial shear strength (IFSS) compared to the untreated case under tensile and compressive tests. The typical microfailure modes including fiber break of cone-shape, matrix cracking, and partial interlayer failure were observed during tensile test, whereas the diagonal slippage in fiber ends was observed under compressive test. For both loading types, fiber breaks occurred around just before and after yielding point. In both the untreated and treated cases AE amplitudes were separately distributed for the tensile testing, whereas they were closely distributed for the compressive tests. It is because of the difference in failure energies of carbon fiber between tensile and compressive loading. The maximum AE voltage for the waveform of carbon or basalt fiber breakages under tensile tests exhibited much larger than those under compressive tests, which can provide the difference in the failure energy of the individual failure processes.

  • PDF

Interfacial Evaluation and Nondestructive Damage Sensing of Carbon Fiber Reinforced Epoxy-AT-PEI Composites using Micromechanical Test and Electrical Resistance Measurement (Micromechanical 시험법과 전기저항 측정을 이용한 탄소섬유 강화 Epoxy-AT-PEI복합재료의 비파괴적 손상 감지능 및 계면물성 평가)

  • Joung-Man Park;Dae-Sik Kim;Jin-Woo Kong;Minyoung Kim;Wonho Kim
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.62-67
    • /
    • 2003
  • Interfacial properties and damage sensing for the carbon fiber/epoxy-amine terminated (AT)-polyetherimide (PEI) composite were performed using microdroplet test and electrical resistance measurements. As AT-PEI content increased, the fracture toughness of epoxy-AT-PEI matrix increased, and interfacial shear strength (IFSS) increased due to the improved fracture toughness by energy absorption mechanisms of AT-PEI phase. The microdroplet in the carbon fiber/neat epoxy composite showed brittle microfailure mode. At 15 phr AT-PEI content ductile microfailure mode appeared because of improved fracture toughness. After curing, the change in electrical resistance $\Delta\textrm{R}$) with increasing AT-PEI content increased gradually because of thermal shrinkage. Under cyclic stress, in the neat epoxy case the reaching time until same stress was faster and their slope was higher than those of 15 phr AT-PEI. The result obtained from electrical resistance measurements under curing process and reversible stress/strain was correspondence well with matrix toughness properties.

Microfailure Degradation Mechanisms and Interfacial Properties of Bioabsorbable Composites for Implant Materials using Micromechanical Technique and Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Implant용 Bioabsorbable 복합재료의 미세파괴 분해메커니즘과 계면물성)

  • 박종만;김대식
    • Composites Research
    • /
    • v.14 no.4
    • /
    • pp.15-26
    • /
    • 2001
  • Interfacial properties and microfailure degradation mechanisms of the bioabsorbable composites fur implant materials were investigated using micromechanical technique and nondestructive acoustic emission (AE). As hydrolysis time increased, the tensile strength, the modulus and the elongation of poly(ester-amide) (PEA) and bioactive glass fibers decreased, whereas these of chitosan fiber almost did not change. Interfacial shear strength (IFSS) between bioactive glass fiber and poly-L-lactide (PLLA) was much higher than PEA or chitosan fiber/PLLA systems using dual matrix composite (DMC) specimen. The decreasing rate of IFSS was the fastest in bioactive glass fiber/PLLA composites whereas that of chitosan fiber/PLLA composites was the slowest. AE amplitude and AE energy of PEA fiber decreased gradually, and their distributions became narrower than those in the initial state with hydrolysis time. In case of bioactive glass fiber, AE amplitude and AE energy in tensile failure were much higher than in compression. In addition, AE parameters at the initial state were much higher than those after degradation under both tensile and compressive tests. In this work, interfacial properties and microfailure degradation mechanisms can be important factors to control bioabsorbable composite performance.

  • PDF

Nondestructive Evaluation and Microfailure Mechanisms of Single Fibers/Brittle Cement Matrix Composites using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 Acoustic Emission을 이용한 단섬유/시멘트 복합재료의 미세파괴 메커니즘과 비파괴적 평가)

  • 박종만;이상일;김진원;윤동진
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.18-31
    • /
    • 2001
  • Interfacial and microfailure properties of the modified steel, carbon and glass fibers/cement composites were investigated using electro-pullout test under tensile and compressive tests with acoustic emission (AE). The hand-sanded steel composite exhibited higher interfacial shear strength (IFSS) than the untreated and even neoalkoxy zirconate (Zr) treated steel fiber composites. This might be due to the enhanced mechanical interlocking, compared to possible hydrogen or covalent bonds. During curing process, the contact resistivity decreased rapidly at the initial stage and then showed a level-off. Comparing to the untreated case, the contact resistivity of either Zr-treated or hand-sanded steel fiber composites increased to the infinity at latter stage. The number of AE signals of hand-sanded steel fiber composite was much more than those of the untreated and Zr-treated cases due to many interlayer failure signals. AE waveforms for pullout and frictional signals of the hand-sanded composite are larger than those of the untreated case. For dual matrix composite (DMC), AE energy and waveform under compressive loading were much higher and larger than those under tensile loading, due to brittle but well-enduring ceramic nature against compressive stress. Vertical multicrack exhibits fur glass fiber composite under tensile test, whereas buckling failure appeared under compressive loading. Electro-micromechanical technique with AE can be used as an efficient nondestructive (NDT) method to evaluate the interfacial and microfailure mechanisms for conductive fibers/brittle and nontransparent cement composites.

  • PDF

Microfailure Mechanisms of Single-Fiber Composites Using Tensile/Compressive Fragmentation Techniques and Acoustic Emission (인장/압축 Fragmentation시험법과 음향방출을 이용한 단 섬유 복합재료의 미세파괴 메커니즘)

  • 김진원;박종만;윤동진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.159-162
    • /
    • 2000
  • Interfacial and microfailure properties of carbon fiber/epoxy matrix composites were evaluated using both tensile fragmentation and compressive Broutman tests with acoustic emission (AE). Amino-silane and maleic anhydride polymeric coupling agents were used via the dipping and electrodeposition (ED), respectively. Both coupling agents exhibited higher improvements in interfacial shear strength (IFSS) under tensile tests than compressive cases. However, ED treatment showed higher IFSS improvement than dipping case under both tensile and compressive test. The typical microfailure modes including fiber break, matrix cracking, and interlayer failure were observed during tensile test, whereas the diagonal slippage in fiber ends was observed during compressive test. For both the untreated and treated cases AE distributions were separated well under tensile testing. On the other hand, AE distributions were rather closer under compressive tests because of the difference in failure energies between tensile and compressive loading. Under both loading conditions, fiber breaks occurred around just before and after yielding point. Maximum AE voltage fur the waveform of carbon or basalt fiber breakage under tensile tests exhibited much larger than those under compressive tests.

  • PDF