• 제목/요약/키워드: 복합수직선반

검색결과 3건 처리시간 0.018초

풍력 발전기 부품가공용 복합수직선반의 최적 설계에 관한 연구 (Optimization of Multi-tasking Vertical Lathe For Windmill Parts)

  • 최학봉;이종훈;박우상;신흥철;오정석;박천홍;이동윤
    • 한국정밀공학회지
    • /
    • 제29권2호
    • /
    • pp.147-155
    • /
    • 2012
  • Wind power, which is one of the promising renewable energies, has shown the high growth rate of 35 % of the annual average in the recent 5 years and also windmill related equipment market has been fast-growing. Yaw & Pitch bearing are the key parts of windmill and are machined by huge vertical lathe which is monopolized by the advanced countries. The purpose of this study is to develop the multi-tasking vertical lathe for 5 MW grade windmill bearings, which might be mass produced 3 or 5 years later. In this study, the structure of the crossrail and rotary table, which are the key units of the huge multi-tasking vertical lathe, were optimized through the finite element analysis. Also the basic performance of the rotary table has been evaluated.

대형 복합수직선반 가공기용 유정압베어링 회전테이블 성능 실험 및 분석 (Performance Evaluation of Hydrostatic Bearing Guided Rotary Table for Large Volume Multi-tasking Vertical Lathe)

  • 심종엽;오정석;박천홍;신흥철;박우상;김민재;김민수
    • 한국정밀공학회지
    • /
    • 제31권7호
    • /
    • pp.635-642
    • /
    • 2014
  • The large volume multi-tasking vertical lathe was developed for machining the bearing parts for a wind power generator. Although the machined part is large in size high precision tolerances are required recently. One of the most important components to achieve this mission is the rotating table which holds and supports the part to be machined. The oil hydrostatic bearing is adopted for the thrust bearing and the rolling bearing for the radial bearing. In this article experimental performance evaluation and its analysis results are presented. The rotational accuracy of the table is assessed and the frequency domain analysis for the structural loop is performed. And in order to evaluate the structural characteristic of table the moment load experiment is performed. The rotational error motion is measured as below 10 ${\mu}m$ for the radial and axial direction and 22,800 Nm/arcsec of moment stiffness is achieved for the rotary table.