• Title/Summary/Keyword: 복합면진시스템

Search Result 2, Processing Time 0.018 seconds

Application of Hybrid Seismic Isolation System to Realize High Seismic Performance for Low-rise Lightweight Buildings (저층 경량건물의 고성능 내진을 위한 복합면진시스템의 적용)

  • Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.4 no.2
    • /
    • pp.185-192
    • /
    • 2013
  • This study presents application effects of hybrid seismic isolation system to realize high seismic performance for low-rise lightweight buildings through a non-linear analysis and onsite experiments. The complex seismic isolation system applied in this study is a method of mixing sliding bearing and laminated rubber bearing in order to overcome limitation of laminated rubber bearing in increasing natural period of the whole seismic isolation system. As a result of the non-linear analysis, seismic isolation buildings designed with complex seismic isolation system are safe because its maximum response displacement is within allowable design displacement even for a strong earthquake which rarely occurs and its maximum response shear is less than design seismic force. As a result of the onsite experiment, the rigidity of seismic isolation stories corresponds to approximately 95.8% of the design equivalent stiffness value. This indicates that actual properties of the whole seismic isolation system correspond to design values.

Control Performance Evaluation of Mid-Story Isolation System for Residence-Commerce Complex Building (주상 복합 구조물에 적용된 중간층 면진 시스템의 성능 검토)

  • Park, Kwang-Seob;Kim, Yun-Tae;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.33-40
    • /
    • 2019
  • A seismic isolation system is one of the most effective control devices used for mitigating the structural responses due to earthquake loads. This system is generally used as a type of base isolation system for low- and mid-rise building structures. If the base isolation technique is applied to high-rise buildings, a lot of problems may be induced such as the movement of isolation bearings during severe wind loads, the stability problem of bearings under large compression forces. Therefore, a mid-story isolation system was proposed for seismic protection of high-rise buildings. Residence-commerce complex buildings in Korea have vertical irregularity because shear wall type and frame type structures are vertically connected. This problem can be also solved by the mid-story isolation system. An effective analytical method using super elements and substructures was proposed in this study. This method was used to investigate control performance of mid-story isolation system for residence-commerce complex buildings subjected to seismic loads. Based on numerical analyses, it was shown that the mid-story isolation system can effectively reduce seismic responses of residence-commerce complex tall buildings.