• Title/Summary/Keyword: 복합단열

Search Result 128, Processing Time 0.032 seconds

난연성 셀룰로오스 복합성형체 제조 및 특성

  • 김동국;강영구
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.05a
    • /
    • pp.49-52
    • /
    • 2002
  • 경량 건축소재는 건축자재의 경량화, 고급화 및 다양화 등의 기능성 건축소재로서 역할을 요구하고 있으며 그 중 대표적인 것으로서는 polyurethane foamd, Cellulose, 무기 fiber 등이 건축소재로 이용되고 있다. Cellulose계의 wood material의 경우 건축폐재, 가로수의 전지나무 및 제재공장에서 발생하는 나무쓰레기, 대패밥 등과 폐신문지 등의 가공 후 폐기물이 발생하고 있으며 이러한 Cellulose계의 물질들은 고유한 습기의 조절능력, 단열특성을 가지고 있으나 Combustibility, rotting, warping 등의 단점을 가지고 있다 이러한 단점을 극복하기 위해 현대생활환경에 접근할 수 있는 새로운 cellulose계의 modification 및 기술적으로 많이 연구되어지고 있다.(중략)

  • PDF

이종 금속 입자를 도핑한 이산화 티타늄박막의 굴절률 및 광학 특성 변화

  • Lee, Jae-Hyeok;Lee, Su-Min;Kim, Seon-Min;Seo, Mun-Seok;Sim, Gwon-U;Han, Jong-Hun;Kim, Tae-Geun;Jo, Jin-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.233-233
    • /
    • 2011
  • 건물 내부의 에너지 효율을 높이기 위해 창호의 단열 효율을 높이는 연구가 최근 큰 주목을 받고 있다. 특히 고굴절률과 저굴절률의 소재를 이용한 다층 박막 구조를 형성하여 높은 광투과율을 유지하면서도 적외선 에너지를 선택적으로 차단하는 창호의 연구가 이루어지고 있다. 본 연구에서는 고굴절률 특성을 가진 TiO2박막을 이종 금속 이온을 sol-gel법을 이용해 첨가 복합화한 후 유리 기판에 스핀 코팅후 열처리하여 성막하였다. 생성된 막은 atomic force microscopy (AFM), 전계 방출 전자현미경, UV-vis를 이용해 각각의 금속 이온에 대한 박막 표면의 형상 변화와 광학적 특성 변화를 확인하였다.

  • PDF

A Study on the Improvement of Accuracy in Plane Positioning by Trilateration (삼변측량에 의한 수평위치 결정의 정확도 향상에 관한 연구)

  • Park, Woon-Young;Kim, Hee-Gyoo;Kwon, Hyon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.8 no.2
    • /
    • pp.35-43
    • /
    • 1990
  • In this paper a two dimensional network adjustment theory is developed to analyze the plane trilateration network of single triangle network, of quadrilateral network, of polygon trilateration network and of combined network. The characteristics of error were analysed by developing an error propagation equation for each form of plane trilateration network. In case of combined network, the result of error analysis was represented by error ellipses and gross error detection was carried out by data snooping method.

  • PDF

Flame Characteristics of Surface Part of Composite Emulsion Exterior Finishes (복합 에멀젼 외장마감재 표면부의 화염 특성)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Song, Sung-Yong;Kim, Deuck Mo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.133-134
    • /
    • 2019
  • As part of recent low-energy policies, thermal insulation standards for buildings are being tightened every year. The importance of external insulation methods is increasing due to the strengthening of insulation standards. Among the main materials used in the external insulation method, dry bit material is a finishing material composed of an organic binder and aggregate. When the fire occurs, the ignition of the surface part causes a direct fire on the thermal insulation material at the rear side when heat energy is concentrated. Therefore, it is important that the finishing material in dry insulation using a dry bit has a low fire spreading property in case of a fire and does not have a sustained combustion. The purpose of this study was to evaluate the fire spreadability by changing the internal fillers while using alkoxide-based acrylic emulsions, hybrid acrylic emulsions, and general acrylic emulsions in order to suppress the fire spreading properties of exterior finish materials.

  • PDF

Thermal Diffusivity Measurement of Carbon/Epoxy and Porous Thermal Insulation Material under Vacuum Condition Using Cyclic Heating Method (주기가열법을 이용한 탄소/에폭시 및 다공성 단열재의 진공 열확산도 측정)

  • Nam, Gi-Won;Yi, Yeong-Moo;Ohnishi, Akira;Kong, Cheol-Won
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.20-25
    • /
    • 2007
  • Cyclic heating method is useful method for measuring the thermal diffusivity of porous materials. The main object of this paper is to develop and verify the thermal diffusivity measuring system of porous materials under vacuum condition. To verify this method, thermal diffusivities of the alumina ($Al_2O_3$) specimen and polystyrene foam were measured. Thermal diffusivities of these specimens were agreed with reference values. Thermal diffusivities of carbon/epoxy and porous insulation material were measured at atmospheric room temperature condition and vacuum condition respectively. Thermal diffusivities of carbon/epoxy and porous insulation material under vacuum are reduced by 66.4% and 64.9% compared to the thermal diffusivities under the atmospheric condition. These differences are considered the effect of the porous insulation material with an air.

Evaluation on Total Energy Consumption of Low-Energy House with Structural Insulated Panels (구조단열패널 적용 저에너지주택의 총에너지사용량 평가)

  • Lee, Hyeon-Ju;Nah, Hwan-Seon;Jo, Hye-Jin;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.15-24
    • /
    • 2013
  • This project is mainly related to evaluation of total energy consumption of low energy house, the exterior envelope of which was wholly composed of structural insulated panels(SIP). The U-value of applied SIP was in the range of 0.189 to $0.269W/m^2{\cdot}K$ and the U-value of pair glass from 0.78 to $1.298W/m^2{\cdot}K$ was applied for window dependent to its function respectively. For comparison of total energy performance, the energy simulation for pilot house was performed to compare with the control house having insulation criteria of Korean building regulation in 2009. Based on simulation of dynamic energy performance, the pilot house saved 48.3% of annual energy consumption while the control house in 2009 consumed as 85.7GJ/y. In case of heating, the result showed that the energy saving ratio amounted to 76.7%. For $CO_2$ emission, the pilot house diminished approximately 35.4% from $6,208.4kgCO_2$ to $4,009.2kgCO_2$. In payback period to early investment, it was analyzed the pilot house took 7.8 years, when the low energy house built by other insulation method with same thermal perfusion took 11.5 years. From this result, it is considered that the SIP is more effective, economic to Green Home application.

A Study on the Evaluation of Basic Properties of Composite Emulsion Finishes (복합 에멀젼계 마감재의 기초물성 평가에 관한 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Kim, Deuck-Mo;Song, Sung-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • The thin coating material used in the outer insulation finishing method is a finishing material mainly based on acrylic emulsion. In this study, the properties of silane modified acrylic emulsion and silica dispersed acrylic emulsion were evaluated. Experimental results showed that the silane modified acrylic emulsion had no significant effect on improving tensile strength, but was effective in improving the performance of adhesion strength, water absorption coefficient, and hot and cold repeat resistance. Silica-dispersed acrylic emulsions were effective in improving tensile strength, and at 10% substitution rate, they were effective in improving the performance of adhesion strength, water absorption coefficient and hot / cold resistance. Through this, it was judged that a composite emulsion capable of improving the performance of the acrylic emulsion could be prepared.

Technological Review on the Development of Metallic Armor Materials (금속 장갑재료의 개발기술 및 발전전망)

  • Kim, Hong-Kyu;Hong, Sung-Suk;Shim, In-Ok
    • Composites Research
    • /
    • v.24 no.2
    • /
    • pp.46-50
    • /
    • 2011
  • This paper describes the state of the art for the development of metallic armor materials which are mainly used as armor plates of the combat vehicles. Several important micro-structural features affecting ballistic properties of the metallic armor are discussed. Optimization of the strength and toughness balance of the metallic armor is necessary for the improvement of the ballistic performance resulting from maximizing the resistance to the penetration of the bullet and also to brittle failure of the plates. Understanding and control of the adiabatic shearing phenomenon developed remarkably during high strain rate deformation is needed to prevent brittle failure of the metallic armor materials.

Heat Shield and Breathable Water-Resistant Design for Manufacturing that are Expressed Multifunctional Building Housewrap (열차폐 및 투습방수성이 발현되는 다기능성 건축용 하우스 랩의 제조설계)

  • Kwon, Oh-Kyung;Kim, Seok-Hoon;Park, Sun-Hwa;Jeong, Won-Wook;Bok, Jin-Seon
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.15-15
    • /
    • 2011
  • 본 연구는 기존의 하우스 랩이 가지는 방풍, 방수 기능 외에 복사열 차단성, 열반사성, 통기성, 투습성, 난연성, 방수성 및 단열성 등의 다기능성이 발현되는 우수한 건축용 하우스 랩을 제조하는 목적으로 시스-코어 섬유로 이루어진 부직포층, 통기성 합성수지 필름층, 니들펀칭 복합 부직포층 및 고분자 필름이 일면 또는 양면에 코팅된 내식성 알루미늄 필름층이 순차적으로 적층되고 핫-멜트 라미네이팅에 의하여 합지 된 다기능성 하우스 랩 및 그의 따른 제조방법에 관한 것이다. 상기 니들펀칭 부직포 내부에 포함 된 아라미드 섬유에 의해 우수한 난연효과를 가지며, 통기성 필름에 의하여 투습방수 기능을 가질 수 있으며, 니들펀칭 부직포층에 다량의 공기가 함유되어 보온성이 우수하고, 내식성 알루미늄 필름층이 가진 빛에 대해 우수한 방사성으로 복사열을 차단하여 단열효과를 나타내는 하우스 랩을 제조하였다.

  • PDF

Risk Assessment Technique for Gas Fuel Supply System of Combined Cycle Power Plants (I) : Based on API RBI Procedures (복합화력발전의 가스연료 공급계통에 대한 위험도 평가 기법 연구 (I) : API RBI 절차에 기반한 위험도 평가)

  • Song, Jung Soo;Yu, Jong Min;Han, Seung Youn;Choi, Jeong Woo;Yoon, Kee Bong
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • The proportion of natural gas-fueled power generation is expanding due to the change of domestic energy policy pursuing reduction of dust and increasing clean energy consumption. Natural gas fuels used for the combined-cycle power plants and the district-heating power plants are operated at high temperature and high pressure in the fuel supply system. Accidents due to leakage of the gas such as fire and explosion should be prevented by applying risk management techniques. In this study, risk assessment was performed on the natural gas fuel supply system of a combined power plant based on the API RP 581 RBI code. For the application of the API RBI code, lines and segments of the evaluation target system were identified. Operational data and input information were analyzed for the calculations of probability of failure and consequence of failure. The results of the risk assessment were analyzed over time from the initial installation time. In the code-based evaluation, the gas fuel supply system was mainly affected by thinning, external damage, and mechanical fatigue damage mechanisms. As the operating time passes, the risk is expected to increase due to the external damage caused by the CUI(Corrosion Under Insulation).