• Title/Summary/Keyword: 복잡한 이벤트처리

Search Result 55, Processing Time 0.018 seconds

Recommendation System Based on Correlation Analysis of User Behavior Data in Online Shopping Mall Environment (온라인 쇼핑몰 환경에서 사용자 행동 데이터의 상관관계 분석 기반 추천 시스템)

  • Yo Han Park;Jong Hyeok Mun;Jong Sun Choi;Jae Young Choi
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.13 no.1
    • /
    • pp.10-20
    • /
    • 2024
  • As the online commerce market continues to expand with an increase of diverse products and content, users find it challenging in navigating and in the selection process. Thereafter both platforms and shopping malls are actively working in conducting continuous research on recommendations system to select and present products that align with user preferences. Most existing recommendation studies have relied on user data which is relatively easy to obtain. However, these studies only use a single type of event and their reliance on time dependent data results in issues with reliability and complexity. To address these challenges, this paper proposes a recommendation system that analysis user preferences in consideration of the relationship between various types of event data. The proposed recommendation system analyzes the correlation of multiple events, extracts weights, learns the recommendation model, and provides recommendation services through it. Through extensive experiments the performance of our system was compared with the previously studied algorithms. The results confirmed an improvement in both complexity and performance.

Bio-Sensing Convergence Big Data Computing Architecture (바이오센싱 융합 빅데이터 컴퓨팅 아키텍처)

  • Ko, Myung-Sook;Lee, Tae-Gyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • Biometric information computing is greatly influencing both a computing system and Big-data system based on the bio-information system that combines bio-signal sensors and bio-information processing. Unlike conventional data formats such as text, images, and videos, biometric information is represented by text-based values that give meaning to a bio-signal, important event moments are stored in an image format, a complex data format such as a video format is constructed for data prediction and analysis through time series analysis. Such a complex data structure may be separately requested by text, image, video format depending on characteristics of data required by individual biometric information application services, or may request complex data formats simultaneously depending on the situation. Since previous bio-information processing computing systems depend on conventional computing component, computing structure, and data processing method, they have many inefficiencies in terms of data processing performance, transmission capability, storage efficiency, and system safety. In this study, we propose an improved biosensing converged big data computing architecture to build a platform that supports biometric information processing computing effectively. The proposed architecture effectively supports data storage and transmission efficiency, computing performance, and system stability. And, it can lay the foundation for system implementation and biometric information service optimization optimized for future biometric information computing.

Structure Health Monitoring System based on Wireless Sensor Network (무선 센서 네트워크 기반의 구조물 안전 감시 시스템)

  • Lim, Hwa-Jung;Lee, Joa-Hyoung;Park, Chong-Myung;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.391-400
    • /
    • 2008
  • There has been increasing interest in developing Structure Health Monitoring(SHM) system based on wireless sensor network(WSN) due to recent advancement in sensor network technologies. SHM is the continuous monitoring of the condition such a acceleration or load of a structure. The SHM system works, which measure key structure parameters systematically, provide information in evaluation of structure integrity, durability and reliability. Currently SHM system collects data via analog sensor and then sends to analysis application through the wired network. The wire system support high accuracy, but suffers the disadvantages in installation costs, complexity of connection and loss of line. It's also difficult to add new sensor nodes. We design and implement the SHM system based on WSN technology to solve those problems.

Mobile Proxy Architecture and Its Practice: Mobile Multimedia Collaboration System (모바일 기기를 위한 프록시 구조와 모바일 멀티미디어 협업 시스템 적용예)

  • Oh, Sang-Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.123-132
    • /
    • 2009
  • The perforrnance and portability of mobile applications can be greatly increased by adopting proxy modiles which exists between the conventional system and the device. When mobile devices collaborate with the conventional computers, there are problems to address: a battery life problem, limited input and output methods, and intermittent wireless connection. Those issues are magnified in the multimedia collaboration environment since it works in a real-time condition and the size of the message in the system is big in many cases. Additionally, because multimedia collaboration system softwares are too heavy and complex for mobile devices, it is veη hard to integrate them with conventional systems. In this paper, we describe our design and its implementation of a novel approach to map events (i.e. messages) using a proxy for mobile applications. We adopt a proxy to provide a content adaptation (i.e. transcoding) where the message contents are customized. Also, we design a mobile version publish/subscribe system to provide communication service for mobile device in loosely coupled and flexible manner. We present our empirical results which show that our design can be efficiently implemented and integrated with a conventional multimedia collaboration system.

Dental Surgery Simulation Using Haptic Feedback Device (햅틱 피드백 장치를 이용한 치과 수술 시뮬레이션)

  • Yoon Sang Yeun;Sung Su Kyung;Shin Byeong Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.6
    • /
    • pp.275-284
    • /
    • 2023
  • Virtual reality simulations are used for education and training in various fields, and are especially widely used in the medical field recently. The education/training simulator consists of tactile/force feedback generation and image/sound output hardware that provides a sense similar to a doctor's treatment of a real patient using real surgical tools, and software that produces realistic images and tactile feedback. Existing simulators are complicated and expensive because they have to use various types of hardware to simulate various surgical instruments used during surgery. In this paper, we propose a dental surgical simulation system using a force feedback device and a morphable haptic controller. Haptic hardware determines whether the surgical tool collides with the surgical site and provides a sense of resistance and vibration. In particular, haptic controllers that can be deformed, such as length changes and bending, can express various senses felt depending on the shape of various surgical tools. When the user manipulates the haptic feedback device, events such as movement of the haptic feedback device or button clicks are delivered to the simulation system, resulting in interaction between dental surgical tools and oral internal models, and thus haptic feedback is delivered to the haptic feedback device. Using these basic techniques, we provide a realistic training experience of impacted wisdom tooth extraction surgery, a representative dental surgery technique, in a virtual environment represented by sophisticated three-dimensional models.