제6세대 컴퓨터로 불리는 신경컴퓨터는 학습과 병렬처리에 의해 인간의 두뇌 기능을 모방한다. 인간의 두뇌는 시각인식, 음성인식, 촉각감지 등 패턴인식뿐 아니라 인간의 복잡한 신체구조를 시각, 촉각 같은 감각기관의 도움을 얻어 움직이는 중요한 역할도 한다. 바로 이 모터제어(motor control) 역시 신경회로가 담당하기 때문에 이를 기계적 신체에 해당하는 로보트 또는 광범위하게 기계, 비행기, 산업공정에 응용하는 것은 매우 자연스럽게 보인다. 이처럼 신경회로가 제어에 응용되는 것을 신경제어 (neurocontrol)라 하고 이를 이용한 기계를 지능기계(intelligent machinery)라 한다. 지능기계는 기본적으로 인간처럼 경험축적 학습 불확실한 환경에서의 적응 자기진단 등의 장점을 가지고 있다. 신경회로의 지극히 광범위한 응용분야중 신경제어는 가장 먼저 실현될 가능성이 높다. 실제로 로보트나 공정제어(process control)처럼 복잡한 비선형 시스템의 제어는 다량의 센서 정보에 기초한 실시간 제어를 필수로 하며 이는 신경회로를 사용함으로써 가장 효율적, 경제적으로 구현할 수 있다. 실제로 신경제어는 전세계적으로 이미 시스템 제어에 응용되어 좋은 결과를 내고 있다. 신경회로의 로보트나 자동화 응용은 학술적인 측면에서는 복잡한 비선형 시스템의 지능제어 (intelligent control)문제에 대한 신선한 해결책을 마련해줄 뿐 아니라 산업자동화라는 막대한 시장을 뒤로 하고 있어 이론에서 실제에 걸쳐 가장 광범위한 파급효과를 가지는 최첨단 기술로 보여진다. 고부가가치 상품을 통한 국제 경쟁력 제고의 차원에서도 정부, 기업 등의 과감한 연구 개발투자가 선행되어야 한다. 특히 이 분야의 연구는 선진국도 최근에 시작한 점으로 보아 정부, 기업이 이에 대한 연구 개발투자를 현명하게 할 경우에 세계적 기술 경쟁력도 확보할 수 있을 것이다. 본 해설에서는 로보트 및 시스템 제어에 관한 기초 이론을 설명하고 신경회로 적용기술을 소개하고 기존 방법과 비교 했을 때의 우월성, 전세계적인 응용연구, 국내외 연구개발 현황, 상업화 가능성, 산업계 응용례, 기술상의 문제점, 향후 전망 등을 다루기로 한다.
A number of temporal abstraction approaches have been suggested so far to handle the high computational complexity of Markov decision problems (MDPs). Although the structure of temporal abstraction can significantly affect the efficiency of solving the MDP, to our knowledge none of current temporal abstraction approaches explicitly consider the relationship between topology and efficiency. In this paper, we first show that a topological measurement from complex network literature, mean geodesic distance, can reflect the efficiency of solving MDP. Based on this, we build an incremental method to systematically build temporal abstractions using a network model that guarantees a small mean geodesic distance. We test our algorithm on a realistic 3D game environment, and experimental results show that our model has subpolynomial growth of mean geodesic distance according to problem size, which enables efficient solving of resulting MDP.
본 논문은 복잡 적응 시스템의 분석 및 모델링을 위해, 인공생명의 기본 패러다임인 셀룰라 오토마타를 선택하여, 무정형의 구조를 가지며 투명한 자료 전파 특성을 갖는 셀룰라 신경 회로망의 설계하고 개발하는데 중점을 두었다. 우선, 신경 회로망의 불규칙한 구조를 발생학적으로 다루어 무정형의 은닉층을 생성하고, 다윈의 진화론을 적용하여 구조적 진화 및 선택을 통해 최적화된 신경 회로망을 설계하였다. 주변 셀의 상태를 감지하여 자신의 상태를 수정해나가는 방식의 셀룰라 오토마타의 투명한 신호 전파 모델로 자료 및 오차의 역전파에 적용하도록 고안하였고, 라마르크의 용불용설을 활용한 오차의역전파 학습 알고리즘을 유도하였다. 이러한 복잡 적응계의 학습 과정을 유도하여 시뮬레이션에서 그 타당성을 입증하였다. 시뮬레이션에서는 신경 회로망의 XOR 문제와 다중 입력 다중 출력 함수에 대한 근사화 문제를 풀었다.
제6세대 컴퓨터로 불리는 신경컴퓨터는 학습과 병렬처리에 의해 인간의 지능을 모방한다. 따라서 지능과 빠른 계산을 요하는 여러 분야에 응용되고 있으며 실제 로봇의 제어나 sensor에 의거한 제어에 응용하여 좋은 결과를 내고 있다. 신경회로의 로봇나 공정제어(process control)응용은 학술적인 측면에서는 복잡한 비선형 시스템의 지능제어(intelligent control)연구이며 산업적 측면에서 보면 산업 자동화라는 막대한 시장을 뒤로 하고 있어 우리나라도 활발한 연구를 절실히 필요로 하고 있다. 본 해설에서는 신경회로를 간단히 소개한 후 로봇 제어 응용을 다루기로 한다. 신경회로의 응용분야중 보고된 결과가 비교적 적은 제어분야를 소개함으로써 독자들에게 연구 자료들을 제공하고 또한 흩어져 있는 신경회로의 제어응용 논문들을 분류 통일함으로써 이 분야를 조감할 수 있게 한다. 또한 로봇을 하나의 복잡하고 비선형적 plant로 보았을 때 로봇의 신경제어는 곧 산업공정의 신경제어에도 그대로 응용되리라 믿는다. 신경제어는 plant의 모델없이도 학습에 의하여 고속 정확한 제어가 가능하고 또 plant 특성변화에 잘 적응하며 병렬성으로 인하여 실시간 제어도 가능하다는 점에서 무한한 잠재력이 있으나 전세계적인 연구는 아직도 크게 미흡한 편이다. 더욱 많은 연구가 절실히 필요하다고 본다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.703-705
/
2005
연속적이고 동적인 실세계에서의 경로 탐색 문제는 이동 로봇 분야에서 주된 문제 중 하나였다. 최근 컴퓨터 성능이 크게 발전하면서 컴퓨터 게임들이 실제에 가까운 연속적인 3차원 환경 모델을 사용하기 시작하였고, 그에 따라 보다 복잡하고 동적인 환경 모델 하에서 경로 탐색을 할 수 있는 능력이 요구되고 있다. 강화 학습 기반의 경로 탐색 알고리즘인 평가치 반복(Value iteration) 알고리즘은 실시간 멀티에이전트 환경에 적합한 여러 장점들을 가지고 있으나, 문제가 커질수록 속도가 크게 느려진다는 단점을 가지고 있다. 본 논문에서는 연속적인 3차원 상황에서 빠르게 동적 변화에 적응할 수 있도록 하기 위하여 작은 세상 네트웍 모델을 사용한 환경 모델 및 경로 탐색 알고리즘을 제안한다. 3차원 게임 환경에서의 실험을 통해 제안된 알고리즘이 연속적이고 복잡한 실시간 환경 하에서 우수한 경로를 찾아낼 수 있으며, 환경의 변화가 관측될 경우 이에 빠르게 적응할 수 있음을 확인할 수 있었다.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2022.06a
/
pp.165-166
/
2022
최근 전세계적으로 자율운항선박(Maritime Autonomous Surface Ship, 이하 MASS)의 기술 개발 및 시험 항해가 본격적으로 추진되고 있다. 하지만 MASS의 출현과 별개로 운항 방식, 제어 방식, 관제 방식 등 명확한 지침은 부재한 상태이다. 육상에서는 머신 러닝을 통하여 자율주행차에 대한 다양한 제어 방식을 연구하고 있으며, 이에 따라서 MASS도 제어 또는 통항 방식에 대한 기초 틀을 마련할 필요성이 있다. 하지만 육상과 달리 해상은 기상, 조종성능, 수심, 장애물 등 다양한 변수들이 존재하고 있어 접근 방식이 복잡하여, 머신 러닝을 적용할 때 환경에 대한 요소를 적절하게 설정해야 한다. 따라서 본 연구는 멀티 에이전트 강화학습을 통하여 MASS의 자율적인 통항 방식을 제안하기 위하여 강화학습의 해상교통환경 설정을 위한 요소를 도출하고자 하였다.
Proceedings of the Korean Information Science Society Conference
/
2007.06c
/
pp.319-323
/
2007
실세계의 여러 문제들은 마르코프 결정 문제(Markov decision problem, MDP)로 표현될 수 있고, 이 MDP는 모델이 알려진 경우에는 평가치 반복(value iteration) 이나 모델이 알려지지 않은 경우에도 강화 학습(reinforcement learning) 알고리즘 등을 사용하여 풀 수 있다. 하지만 이들 알고리즘들은 시간 복잡도가 높아 크기가 큰 실세계 문제에 적용하기 쉽지 않아, MDP를 계층적으로 분할하거나, 여러 단계를 묶어서 수행하는 등의 시간적 추상화(temporal abstraction) 방법이 제안되어 왔다. 이러한 시간적 추상화 방법들의 문제점으로는 시간적 추상화의 디자인에 따라 MDP의 풀이 성능이 크게 달라질 수 있으며, 많은 경우 사용자가 이 디자인을 직접 제공해야 한다는 것들이 있다. 최근 사용자의 간섭이 필요 없이 자동적으로 시간적 추상화를 만드는 방법들이 제안된 바 있으나, 이들 방법들 역시 결과물에 대한 이론적인 성능 보장(performance guarantee)은 제공하지 못하고 있다. 본 연구에서는 이러한 문제점을 해결하기 위해 MDP의 구조와 그 풀이 성능을 연관짓는 복잡도 척도에 대해 살펴본다. 이를 위해 MDP로부터 얻은 상태 경로 그래프(state trajectory graph)의 위상적 성질들을 여러 네트워크 척도(network measurements) 들을 이용하여 측정하고, 이와 MDP의 풀이 성능과의 관계를 다양한 상황에 대해 실험적, 이론적으로 분석해 보았다.
IBM Watson은 새로운 컴퓨팅 시대인 코그니티브 시스템으로의 첫 걸음으로 상징된다. Watson은 현 프로그램 컴퓨팅의 시대 기반 위에 구축되었으나, 매우 중요한 방식에서 차이가 있다. ${\bullet}$ 오늘날 전세계 데이터의 80%를 차지하고 있는 복잡한 비정형 데이터에 대한 이해를 돕는 자연어 처리(Natural Language Processing) ${\bullet}$ 관련된 증거만을 기반으로 응답에 가중치를 부여하고 평가하기 위한 고도의 분석 기법을 적용한 가설 생성 및 평가 방식 ${\bullet}$ 반복을 통해 좀더 똑똑해 질 수 있도록 결과를 기반으로 학습을 개선할 수 있도록 돕는 동적 학습 방식이 각각이 Watson에만 특별한 것은 아니지만, Watson은 각 역량의 조합을 통해 강력한 솔루션을 제공하고 있다. IBM Watson과 같은 코그니티브 시스템은 조직이 생각하고, 행동하고, 운영되는 방식을 혁신시킬 수 있다. 이 글에서는 어떻게 IBM Watson이 시작되었으며, 직접적이고 신뢰할 수 있는 답변을 제공하기 위해 자연어 처리와 동적 학습 및 가설 생성/평가를 어떻게 조합하는지, 나아가 어떤 분야에서 적용되고 있는지 그 사례를 소개하고자 한다.
The Journal of Korean Association of Computer Education
/
v.10
no.6
/
pp.51-59
/
2007
According to developments in info-communication, the recent educational paradigm asks not for a passive transmitter but an active constructor who can solve a variety of complicated problems in real situations. Such a change asks for an educational setting which includes sharing ideas and information rather than simply possessing them. Learning through presentation has many problems including few presentation opportunities as well as the reuse of presentation data. This study suggests such strategies as promoting interactions through presentations and the practical use of these strategies in class. For this, the role of the presentation data provider and learner, and strategies to implement the step by step learning support system have been suggested. Using presentations, as described in this study, allow for communication with students outside the original class time and location. The degree of learning students experience through presentations is expected to be high.
KIPS Transactions on Software and Data Engineering
/
v.10
no.7
/
pp.263-270
/
2021
Reinforcement learning(RL) is the method to find an optimal policy through training. and it is one of popular methods for solving lifesaving and disaster response problems effectively. However, the conventional reinforcement learning method for disaster response utilizes either simple environment such as. grid and graph or a self-developed environment that are hard to verify the practical effectiveness. In this paper, we propose the design of a disaster response RL environment which utilizes the detailed property information of the disaster simulation in order to utilize the reinforcement learning method in the real world. For the RL environment, we design and build the reinforcement learning communication as well as the interface between the RL agent and the disaster simulation. Also, we apply the dimension reduction method for converting non-image feature vectors into image format which is effectively utilized with convolution layer to utilize the high-dimensional and detailed property of the disaster simulation. To verify the effectiveness of our proposed method, we conducted empirical evaluations and it shows that our proposed method outperformed conventional methods in the building fire damage.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.