• Title/Summary/Keyword: 복원에러율

Search Result 33, Processing Time 0.034 seconds

Motion Vector Recovery Based on Homogeneous Motion Area for H.263 Video Communications (H.263 비디오 통신을 위한 동일 움직임영역 기반 움직임벡터 복원)

  • Kim, Jeong-Hyeon;Son, Nam-Rye;Park, Seong-Chan;Hwang, Seong-Un;Yun, Gi-Song;Son, Deok-Ju;Lee, Gwi-Sang
    • The KIPS Transactions:PartB
    • /
    • v.8B no.1
    • /
    • pp.43-49
    • /
    • 2001
  • 이동통신 채널과 같이 에러 발생율이 높은 환경에서 부호화된 비디오를 전송할 때 채널에어에 손상된 비트스트림은 복호되기 어려울 뿐만 아니라, 비트스트림의 다른 부분으로까지 에러를 전파시킨다. 한 프레임에 손실블록이 있을 때 기존방법에서는 주변블록들의 움직임벡터 평균을 구하거나 비슷한 예측을 통해 손실블록의 움직임벡터를 복원한다. 그러나 손실블록이 움직이는 객체의 경계부근에서 발생할 때 기존방법은 효율적이지 못한다. 따라서 제안 알고리즘은 기존방법보다 정확한 움직임벡터를 예측하기 위해 손실블록의 주변블록들 중세서 동일한 움직임을 갖는 블록들로 구성된 영역을 찾은 후, 동일움직임영역에 포함된 블록들의 움직임벡터를 이용하여 손실된 블록을 복원한다. 실험결과 제안방법이 기존방법에 비해 PSNR과 시각적인 화질면에서 우수한 성능을 보임을 알 수 있다.

  • PDF

Study of Error Reconstruction Algorithm for Real-time Voice for Transmissions over the Internet (인터넷상의 실시간 음성 전송을 위한 에러 복원 알고리즘의 연구)

  • 신현숙;최연성
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.388-394
    • /
    • 2001
  • In this paper, a large number of algorithm have been proposed for error concealment and reconstruction real-time voice transmission for over the internet. The main purpose of this algorithm perform error reconstruction using low bandwidth and then guarantee good voice quality. Error concealment algorithm can be classified into receiver-based and sender- and receiver-based. In this paper, we apply the sender - and receiver-based reconstruction algorithm to low bit rate codec using CELP.

  • PDF

Packet Loss Recovery for H.264 Video Transmission Over the Interne (인터넷 상에서의 H.264 비디오 전송을 위한 패킷 손실 복원에 관한 연구)

  • Ha, Ho-Jin;Kim, Young-Yong;Yim, Chang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.950-958
    • /
    • 2007
  • This paper presents an efficient packet loss resilient scheme for real-time video transmission over the Internet. By analyzing the temporal and spatial dependencies in inter- and intra-frames, we assign forward error correction codes (FEC) across video packets for minimizing the effect of error concealment and error propagation from packet loss. To achieve optimal allocation of FEC codes, we formulate the effect of packet loss on video quality degradation as packet distortion model. Then we propose an unequal FEC assignment scheme with low complexity based on packet correction rate, which uses the packet distortion model and includes channel status information. Simulation results show that the proposed FEC assignment scheme gives substantial improvement for the received video quality in packet lossy networks. Furthermore the proposed scheme achieves relatively smaller degradation of video quality with higher packet loss rates.

Cell-Based Wavelet Compression Method for Volume Data (볼륨 데이터를 위한 셀 기반 웨이브릿 압축 기법)

  • Kim, Tae-Yeong;Sin, Yeong-Gil
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.11
    • /
    • pp.1285-1295
    • /
    • 1999
  • 본 논문은 방대한 크기의 볼륨 데이타를 효율적으로 렌더링하기 위한 셀 기반 웨이브릿 압축 방법을 제시한다. 이 방법은 볼륨을 작은 크기의 셀로 나누고, 셀 단위로 웨이브릿 변환을 한 다음 복원 순서에 따른 런-길이(run-length) 인코딩을 수행하여 높은 압축율과 빠른 복원을 제공한다. 또한 최근 복원 정보를 캐쉬 자료 구조에 효율적으로 저장하여 복원 시간을 단축시키고, 에러 임계치의 정규화로 비정규화된 웨이브릿 압축보다 빠른 속도로 정규화된 압축과 같은 고화질의 이미지를 생성하였다. 본 연구의 성능을 평가하기 위하여 {{}} 해상도의 볼륨 데이타를 압축하여 쉬어-? 분해(shear-warp factorization) 알고리즘에 적용한 결과, 손상이 거의 없는 상태로 약 27:1의 압축율이 얻어졌고, 약 3초의 렌더링 시간이 걸렸다.Abstract This paper presents an efficient cell-based wavelet compression method of large volume data. Volume data is divided into individual cell of {{}} voxels, and then wavelet transform is applied to each cell. The transformed cell is run-length encoded according to the reconstruction order resulting in a fairly good compression ratio and fast reconstruction. A cache structure is used to speed up the process of reconstruction and a threshold normalization scheme is presented to produce a higher quality rendered image. We have combined our compression method with shear-warp factorization, which is an accelerated volume rendering algorithm. Experimental results show the space requirement to be about 27:1 and the rendering time to be about 3 seconds for {{}} data sets while preserving the quality of an image as like as using original data.

Key-word Error Correction System using Syllable Restoration Algorithm (음절 복원 알고리즘을 이용한 핵심어 오류 보정 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.165-172
    • /
    • 2010
  • There are two method of error correction in vocabulary recognition system. one error pattern matting base on method other vocabulary mean pattern base on method. They are a failure while semantic of key-word problem for error correction. In improving, in this paper is propose system of key-word error correction using algorithm of syllable restoration. System of key-word error correction by processing of semantic parse through recognized phoneme meaning. It's performed restore by algorithm of syllable restoration phoneme apply fluctuation before word. It's definitely parse of key-word and reduced of unrecognized. Find out error correction rate using phoneme likelihood and confidence for system parse. When vocabulary recognition perform error correction for error proved vocabulary. system performance comparison as a result of recognition improve represent 2.3% by method using error pattern learning and error pattern matting, vocabulary mean pattern base on method.

Recovery of Missing Motion Vectors Using Modified ALA Clustering Algorithm (수정된 ALA 클러스터링 알고리즘을 이용한 손실된 움직임 벡터 복원 방법)

  • Son, Nam-Rye;Lee, Guee-Sang
    • The KIPS Transactions:PartB
    • /
    • v.12B no.7 s.103
    • /
    • pp.755-760
    • /
    • 2005
  • To transmit a video bit stream over low bandwith, such as mobile, channels, encoding algorithms for high bit rate like H.263+ are used. In transmitting video bit-streams, packet losses cause severe degradation in image quality. This paper proposes a new algorithm for the recovery of missing or erroneous motion vectors when H.263+ bit-stream is transmitted. Considering that the missing or erroneous motion vectors are closely related with those of neighboring blocks, this paper proposes a temporal-spatial error concealment algorithm. The proposed approach is that missing or erroneous Motion Vectors(MVs) are recovered by clustering the movements of neighboring blocks by their homogeneity. MVs of neighboring blocks we clustered according to ALA(Average Linkage Algorithm) clustering and a representative value for each cluster is determined to obtain the candidate MV set. By computing the distortion of the candidates, a MV with the minimum distortion is selected. Experimental results show that the proposed algorithm exhibits better performance in subjective and objective evaluation than existing methods.

A Study on High Resolution Reconstruction Algorithms for improving Resolution (해상도 향상을 위한 고해상도 복원 알고리즘 연구)

  • Baek, Young-Hyun;Moon, Sung-Ryong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.72-79
    • /
    • 2007
  • In this paper, It propose a new restoration algorithm of high resolution, which is reconstructed to high resolution image using low resolution image informations. The proposed algorithm is constructed based on super resolution theory, it is consisted of progressive steps of the integration and construction. It reduced a lot of data-processing capacity and noise with integration through sub-pixel movement and wavelet basis through a higher resolution. As a result, it is shown that the main information is maintained and the error rate is improved. Using expansion fuzzy wavelet B-spline interpolation in stage of construction, it is confirmed that we can achieve smoothing image and good resolution without blur and block.

Error Resilient Video Coding Techniques Using Multiple Description Scheme (다중 표현을 이용한 에러에 강인한 동영상 부호화 방법)

  • 김일구;조남익
    • Journal of Broadcast Engineering
    • /
    • v.9 no.1
    • /
    • pp.17-31
    • /
    • 2004
  • This paper proposes an algorithm for the robust transmission of video in error Prone environment using multiple description codingby optimal split of DCT coefficients and rate-distortionoptimization framework. In MDC, a source signal is split Into several coded streams, which is called descriptions, and each description is transmitted to the decoder through different channel. Between descriptions, structured correlations are introduced at the encoder, and the decoder exploits this correlation to reconstruct the original signal even if some descriptions are missing. It has been shown that the MDC is more resilient than the singe description coding(SDC) against severe packet loss ratecondition. But the excessive redundancy in MDC, i.e., the correlation between the descriptions, degrades the RD performance under low PLR condition. To overcome this Problem of MDC, we propose a hybrid MDC method that controls the SDC/MDC switching according to channel condition. For example, the SDC is used for coding efficiency at low PLR condition and the MDC is used for the error resilience at high PLR condition. To control the SDC/MDC switching in the optimal way, RD optimization framework are used. Lagrange optimization technique minimizes the RD-based cost function, D+M, where R is the actually coded bit rate and D is the estimated distortion. The recursive optimal pet-pixel estimatetechnique is adopted to estimate accurate the decoder distortion. Experimental results show that the proposed optimal split of DCT coefficients and SD/MD switching algorithm is more effective than the conventional MU algorithms in low PLR conditions as well as In high PLR condition.

A Design of Viterbi Decoder by State Transition Double Detection Method for Mobile Communication (상태천이 이중검색방식의 이동통신용 Viterbi 디코더 설계)

  • 김용노;이상곤;정은택;류흥균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.4
    • /
    • pp.712-720
    • /
    • 1994
  • In digital mobile communication systems, the convolutional coding is considered as the optimum error correcting scheme. Recently, the Viterbi algorithm is widely used for the decoding of convolutional code. Most Viterbi decoder has been proposed in conde rate R=1/2 or 2/3 with memory components (m) less than 3. which degrades the error correcting capability because of small code constraints (K). We consider the design method for typical code rate R=1/2, K=7(171,133) convolutional code with memory components, m=6. In this paper, a novel construction method is presented which combines maximum likelihood decoding with a state transition double detection and comparison method. And the designed circuit has the error-correcting capability of random 2 bit error. As the results of logic simulation, it is shown that the proposed Viterbi decoder exactly corrects 1 bit and 2 bit error signal.

  • PDF

Macroblock-based Adaptive Interpolation Filter Method Using New Filter Selection Criterion in H.264/AVC (H.264/AVC에서 새로운 필터 선택 기준을 이용한 매크로 블록 기반 적응 보간 필터 방법)

  • Yoon, Kun-Su;Moon, Yong-Ho;Kim, Jae-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4C
    • /
    • pp.312-320
    • /
    • 2008
  • The macroblock-based adaptive interpolation filter method has been considered to be able to achieve high coding efficiency in H.264/AVC. In this method, although the filter selection criterion considered in terms of rate and distortion have showed a good performance, it still leaves room for improvement. To improve high coding efficiency better than conventional method, we propose a new filter selection criterion which considers two bit rates, motion vector and prediction error, and reconstruction error. In addition, the algorithm for reducing the overhead of transmitting the selected filter information is presented. Experimental results show that the proposed method significantly improves the coding efficiency compared to ones using conventional criterion. It leads to about a 5.19% (1 reference frame) and 5.14% (5 reference frames) bit rate savings on average compared to H.264/AVC, respectively.