• Title/Summary/Keyword: 복사열

Search Result 727, Processing Time 0.03 seconds

A Combustion Characteristic Analysis of Quercus Variabilis and Pinus Densiflora Fallen Leaves Using Radiation Heat Flux (복사열을 이용한 소나무와 굴참나무 낙엽의 연소특성 분석)

  • Park, Hyung-Ju;Kim, Eung-Sik;Kim, Jang-Hwan;Kim, Dong-Hyun
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • The combustion characteristics of surface forest fire fuels was analysed using variable external irradiation level. The characteristics such as ignition time, ignition temperature, critical heat flux and mass loss rate were measured. Fuel samples were exposed to incident heat fluxes from 8 to $50\;kW/m^2$. For the measurement of various combustion characteristics, the size of specimen holder was $100\;mm{\times}100\;mm{\times}12\;mm$ and the fuel samples grinded by electric mill were the fallen leaves of Quercus variabilis and Pinus densiflora. As results, the occurrence of ignition is possible to the heat flux more than $9\;kW/m^2$. The fuel of Pinus densiflora keeps its high temperature longer than that of Quercus variabilis during the combustion process. The results of measurement shows that the maximun and average mass loss rate of Quercus variabilis larger than that of Pinus densiflora.

고온 고속 노즐부위에서의 열전달

  • 장태호
    • Journal of the KSME
    • /
    • v.25 no.3
    • /
    • pp.236-241
    • /
    • 1985
  • 본 고에서는 일반적으로 노즐 부위 열해석에서 무시되는 복사열전달율과 점성소산효과를 수치적 모델을 통하여 그 필요성 여부를 조사한 것이며 다음과 같은 결론을 얻었다. (1)연소실 및 수 렴부위에서는 복사열전달율이 대류열전달율과 같은 차수의 크기로 나타나고 있어서 고 복사율을 갖는 연소가스에서는 특히 중요하다. 특히 최근에 많이 사용되는 연료에는 연소가스에 산화알 루미늄 성분이 증가하는 추세이므로 노즐부위 열해석에는 복사열전달이 차지하는 비중이 커질 것이다. (2)노즐의 확산부위에서는 고속으로 인하여 가스자체의 점성소산이 일어나 특성치 보 정계수 값이 감소한다. 따라서 Bartz의 예측치 보다는 열전달계수의 값이 적어지고 있다. (3) 따라서 노즐수렴부위에서는 일반적으로 Bartz의 예상치보다 높고 확산부에서는 낮은 결과를 얻 었던 실험결과와를 비교할 때 고온고속 노즐에서의 열전달해석은 복사 열전달과 점성열 소산을 고려함으로써 정확하게 될 수 있다. (4)이상 고려된 실험 데이터와 수치모델의 고찰은 노즐내의 침식이 없는 경우이나 실제의 경우 노즐벽 표면에서 화학적 반응이 일어난다. 그러나 이때 발 생될 수 있는 순수한 발한효과는 미미하며 단지 전체적인 단면의 열 해석시 상기에서 예측된 열전달율을 근간으로 화학반응열 및 온도분포를 계산하여야 할 것이다.

  • PDF

Effects of Radiation Heat Transfer on the Fire in an Atrium (아트리움 공간에서 화재발생시 복사열전달의 영향 분석)

  • Yoon, Kyung-Beom;Chang, Hee-Chul;Kim, Tae-Kuk
    • Fire Science and Engineering
    • /
    • v.21 no.4
    • /
    • pp.18-24
    • /
    • 2007
  • The purpose of this study is focussed on the numerical predictions of temperature distribution by radiation heat transfer in atrium fire using the field fire model and the CCRHT-3D code. This code uses standard $k-{\varepsilon}$ turbulent model with SIMPLE algorithm and weighted sum of gray gases model regrouping(WSGGM-RG). The WSGGM-RG calculates radiative properties on the reduced computational loads while reserving the accuracy. The numerical results show that lower temperature distributions on the wall and the top ceiling wall can be obtained by considering radiative heat transfer. The temperature on the top ceiling wall can be an important parameter in predicting the operating condition of the sprinkler head.

Numerical Study on the Thermal Design of Lunar Terrain Imager System Loaded on the Korea Pathfinder Lunar Orbiter (시험용 달 궤도선의 광학탑재체 시스템 열설계에 대한 수치해석적 연구)

  • Kim, Taig Young;Chang, Su-Young;Heo, Haeng-Pal
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.309-318
    • /
    • 2019
  • The thermal design of the Lunar Terrain Imager (LUTI) on the Korean Pathfinder Lunar Orbiter (KPLO) was performed and the soundness of the thermal design was verified by thermal analysis. The thermal environment of the lunar mission orbit should be reflected in the thermal design because the IR radiation of the lunar surface is important, unlike the earth orbit. The components or modules exposed to the outside of the satellite are insulated with MLI as much as possible, but the camera tube and the radiator are functionally exposed, so the thermal shield using the concept of radiation shape factor is mounted on the front to mitigate IR radiation. The IR emissivity is important in the front side of the radiator that receives little solar radiation, and components that are susceptible to thermal deformation such as the tube use a radiation heater to minimize the temperature gradient. Through the investigation of computational results, it was confirmed that the thermal design of LUTI is stable in various situations.

An Experimental Study on the Radiant Heat of the Firedoors in Fire (화재시 방화문의 복사열에 관한 실험적 연구)

  • Jeon, Jun-Pyo;Jeon, Soo-Min;Cho, Nam-Wook;In, Ki-Ho;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.8-13
    • /
    • 2011
  • The fire compartments which are composed of fire walls and fire doors for buildings are compulsorily required to minimize the fire damage in Korea. The performance standards of fire doors for compartments are regulated by the notification of the ministry of land, transport and maritime affairs and are mainly about the Integrity of the doors not insulation. In this study, we measured the radiant heat of six different kinds of fire doors in fire and analyzed the results and presented the reasons of the need to consider adding the radiant heat standard for fire doors to the notification.

Analysis on the Explosion Risk Characteristic of Hydrogen blended Natural Gas (HCNG 혼합연료의 폭발 위험 특성 분석)

  • Kang, Seung-Kyu;Kim, Young-Gu;Kwon, Jeong-Rak
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.223-229
    • /
    • 2014
  • This study investigated the explosion characteristics of HCNG fuel using a simulation tool. The damage caused by the storage container explosion and vapor cloud explosion in a gas station was predicted. In case of an vapor cloud explosion in the HCNG station, 50~200kPa explosion pressure was predicted inside the station. When the cylinder explosion was occurred, in case of hydrogen, the measured influential distance of overpressure was 59m and radiant heat was 75m. In case of CNG, influential distance of overpressure was 89m and radiant heat was 144m would be estimated. In case of 30% HCNG that was blended with hydrogen and CNG, influential distance of overpressure was 81m and radiant heat was 130m were measured. The damage distance that explosive overpressure and radiant heat influenced CNG was seen as the highest. HCNG that was placed between CNG and hydrogen tended to be seen as more similar with CNG.

Study on the Thermal Characteristics of the Fire Fighter's Waterproof Clothing Exposed to the Radiation Heat (복사열에 노출된 소방용 방수복의 열적 특성에 관한 연구)

  • 방창훈
    • Fire Science and Engineering
    • /
    • v.17 no.1
    • /
    • pp.21-25
    • /
    • 2003
  • This experimental study shows the thermal characteristics of the fire fighter's waterproof clothing exposed to the radiation heat. From the test results, the surface temperature of the fire fighter's waterproof clothing exposed to the radiation with the passage of time sharply increased as the exposed-distance became closer. Also as the radiant heat flux increased, the surface temperature is higher and the time reaching steady state is sharply shorter. As the exposed-distance become more distant, the surface temperature of the fire fighter's waterproof clothing decreased and the difference of temperature between the front side and the back side of the clothing decreased as well. Besides, the radiant heat flux increased, the safety exposed-distance increased. Therefore it is necessary that fire fighter have to work keeping a fixed safe distance from the radiant heat source.

Comparison of Thermal Protective Performance Test of Firefighter's Protective Clothing against Convection and radiation heat sources (대류와 복사 열원에 대한 특수방화복의 열보호 성능시험 비교)

  • Kim, Hae-Hyoung;Yoo, Seung-Joon;Park, Pyoung-Kyu;Kim, Young-Soo;Hong, Seung-Tae
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.17-23
    • /
    • 2017
  • The test methods using convection (flame) and radiation heat sources were compared to evaluate the thermal protective performance of the firefighter's protective clothing. In particular, the influence of the outer shell, mid-layer, and lining constituting the firefighter's protective clothing on the thermal protective performance was compared for convection and radiation heat sources. Tests for the thermal protective performance were carried out according to KS K ISO 9151 (convection), KS K ISO 6942 (radiation), and KS K ISO 17492 (convection and radiation). When tested under the same incident heat flux conditions ($80kW/m^2$), the heat transfer index ($t_{12}$ and $t_{24}$) for the radiation heat source was higher than that for the convection heat source. This means that radiation has a lesser effect than convection. For the convection heat source, the lining had the greatest effect on the thermal protective performance, followed by the mid-layer and the outer shell. On the other hand, for the radiation heat source, the effect on the thermal protective performance was great in the order of lining, outer shell, and mid-layer. Convection and radiation have fundamentally different mechanisms of heat transfer, and different heat sources can lead to different thermal protective performance results depending on the material composition. Therefore, to evaluate the thermal protective performance of the firefighter's protective clothing, it is important to test not only the convection heat source, but also the radiation heat source.

Thermophoresis of highly absorbing, emitting particles suspended in a mixed convection flow system (혼합 대류 유동시스템에 부유된 고흡수 방사하는 입자의 열 확산)

  • Yoa, S. J.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.115-125
    • /
    • 1992
  • 혼합 대류 이상 유동 시스템에 부유된 슈트와 미분탄과 같은 고흡수, 방사하는 입자의 열확산적 입자이동에 대한 복사 및 부력효과를 수치적으로 검토하였다. 기체 및 입자유동의 지배방정식 들은 Euler 관점의 two-fluid model의 근간에서 수행되었으며, 에너지 보존식의 비선형 복사 생 성항은 P-1 근사방법에 의해 계산되었다. 혼합 대류 유동에서의 입자의 열확산 현상은 복사 열 전달과 커플링되며, 복사효과의 증가는 부력효과를 상대적으로 감소시켜 부력효과에 의한 입자 부착율을 완화시켰다. 복사효과가 무시될 때 Grashof 수의 증가에 따라 입자의 확산효과는 감 소되었으며, 복사효과가 함께 작용될 때 입자 부착율은 증가됨을 보였다.

  • PDF