• Title/Summary/Keyword: 복사강도

Search Result 88, Processing Time 0.054 seconds

Spectral Weighted-Sum-of-Gray-Gases Modeling of Narrow Band for Prediction of Radiative Heat Transfer Induced from Liquid Engine Plume (액체 엔진 플룸 복사 열전달 예측을 위한 파장별 회체가스 중합법의 좁은밴드 적용)

  • Ko, Ju-Yong;kim, In-Sun
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.17-25
    • /
    • 2009
  • The precise calculation of gas absorption coefficient in the radiative transfer equation is very important to the prediction of radiative heat transfer induced from liquid engine plume in view of base insulation design. For this purpose, the WNB model for gas absorption coefficient is described with the selection of important parameters and then the calculated results are compared with those of SNB model for validation. Total emissivity, narrow band averaged intensity and total intensity are calculated and compared to the results of SNB model. As results, the total emissivity and the total intensity are well matched within 3.1% and roughly 5 % error, respectively. Moreover, the gas modeling database is constructed with estimation of the combustion gas composition of $CO_2$ and $H_2O$ for liquid engine plume.

  • PDF

Copy Protection technology using scene-based video watermarking (장면단위의 비디오 워터마킹을 이용한 복사방지기술)

  • 성영경;최윤희;최욱철;최태선
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2239-2342
    • /
    • 2003
  • 디지털 방송의 발달과 인터넷의 사용증가로 인해 멀티미디어 데이터가 기하급수적으로 증가하고 있다. 본 논문에서는 디지털 데이터의 쟁점 중 하나인 불법복제로부터 저작권을 보호하기 위한 비디오 워터마킹 방법을 제안한다. 하드디스크를 내장한 디지털 방송 수신기에 복사 방지를 위한 복사제어 정보를 장면단위로 영상의 복잡도와 움직임 벡터의 크기를 고려하여 워터마크의 형태로 삽입한다. 즉, 복잡한 장면에 대해서는 강도를 강하게 삽입하고 단순한 장면에 대해서는 강도를 약하게 삽입함으로써 워터마크의 비가시성과 강인성을 동시에 만족할 수 있다.

  • PDF

Research on the Decolorization of Epoxy Polymer by Accelerated Solar Radiation Test (태양광 복사 가속화 시험을 통한 에폭시 폴리머의 색 변화 특성 연구)

  • Lee, Sang-Bong;Lee, Dong-Geon;Kim, Myung-Jun;Lee, Soo-Yong;Park, Jung-Sun;Kang, Tae-Yeop;Baek, Sang-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.949-956
    • /
    • 2016
  • There are a number of effects by solar radiation in many aerospace industrial fields, such as degradation of mechanical properties, sealing effect of sealants or decolorization. Because it takes long time to investigate these effects by using the light of natural state, new methods are developed for accelerating this phenomenon. In this paper, we developed an apparatus to simulate accelerated solar radiation phenomenon selecting irradiation intensity $1,120W/m^2$ as the designed environment. Epoxy polymer as the composite material was chosen and processed by ASTM-D638, a reference for tensile test of polymer and plastic. Total color shift was selected as the test category to evaluate acceleration of the test. We obtained acceleration factors and numerical model from test data and concluded it can shorten test periods by accelerated irradiation intensity of $1,120W/m^2$.

Instability Analysis of Counterflow Diffusion Flames with Radiation Heat Loss (복사 열손실을 받는 대향류 확산화염의 불안정성 해석)

  • Lee, Su-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.857-864
    • /
    • 2012
  • A linear stability analysis of a diffusion flame with radiation heat loss is performed to identify linearly unstable conditions for the Damk$\ddot{o}$hler number and radiation intensity. We adopt a counterflow diffusion flame with unity Lewis number as a model. Near the kinetic limit extinction regime, the growth rates of disturbances always have real eigenvalues, and a neutral stability condition perfectly falls into the quasi-steady extinction. However, near the radiative limit extinction regime, the eigenvalues are complex, which implies pulsating instability. A stable limit cycle occurs when the temperatures of the pulsating flame exceed the maximum temperature of the steady-state flame with real positive eigenvalues. If the instantaneous temperature of the pulsating flame is below the maximum temperature, the flame cannot recover and goes to extinction. The neutral stability curve of the radiation-induced instability is plotted over a broad range of radiation intensities.

Infrared Signature Analysis of the Aircraft Exhaust Plume with Radiation Database (복사 데이터베이스를 활용한 항공기 배기 플룸 IR 신호 해석)

  • Cho, Pyung Ki;Gu, Bonchan;Baek, Seung Wook;Kim, Won Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.568-575
    • /
    • 2016
  • For the combat survivability, an infrared signature emitted from aircraft is needed to be predicted and analyzed. In this study, we studied the infrared signature from the exhaust plume from the viewpoint of Infrared(IR) detector. The Line-By-Line method using the radiation database is used for radiative property, and radiative intensity analysis is conducted along 1-D line of sight based on the radiative property. The numerical thermo-fluid field for the plume is conducted by ANSYS FLUENT, while setting the lines of sight having the different detection angle on the thermo-fluid field. We found the high IR signature on the line of sight passing through the locally high temperature region of the plume inside, and the strongest signature from the line of sight toward the nozzle surface. Based on this, it confirms the influence of the surface radiative emission on the infrared signature.

Safety Evaluation of Radiating Element by Structural Test and Stress Analysis (구조 실험 및 응력 해석을 통한 복사 소자의 안전성 평가)

  • Kim, Jin-Yul;Kim, Dong-Seob;Park, Byung-Rak;Kim, Jin-Sung;Kim, Min-Sung;Park, Chan-Yik;Hwang, Woon-Bong
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.259-264
    • /
    • 2013
  • This study manufactured the radiating element of multi-band antenna skin structure which satisfy electrical and mechanical performance and is made by double injection molding process. Structural test including impact and buckling test is carried out and stress analysis is simulated to evaluate safety of radiating element for the axial and shear loads, when changing of the skin structure is occurred by the external force. To predict allowable load of structure and evaluate safety on impact and buckling, experimental and analytic method is used in strength analysis of structure.

Combined Radiation-Natural Convection Heat Transfer in a Rectangular Enclosure (직사각형 밀폐공간내에서의 복사 및 자연대류 열전달)

  • 김기훈;이택식;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.331-344
    • /
    • 1987
  • A numerical analysis has been conducted on the interaction of the thermal radiation and natural convection in a rectangular enclosure filled with a gray fluid. P-1 approximation is adopted for the radiative transfer and its application limit is examined. Considered are the Stark number effect, the optical thickness effect and the wall emissivity effect on the flow and heat transfer characteristics. As the Stark number increase or the optical thickness decreases, the boundary layer thickness and the flow velocity increase. Transition to turbulence is retarded with the increase of the radiation effect. When the optical thickness is one, the radiation effect is negligible for the Stark numbers larger than 10.

A Study on Temperature Measurements of Droplet Diffusion Flame using a Two Color Method (이색법을 이용한 액적 확산 화염의 온도 측정에 관한 연구)

  • Lee, Jong-Won;Kim, Youn-Kyu;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.20-25
    • /
    • 2017
  • In the present study, the temperature distribution of droplet diffusion flames was predicted from the measurements of radiative emissions of soot particles formed. In order to predict the temperature distributions, the radiative emissions from soot particles filtered at both 700 nm and 900 nm were measured using CCD cameras and local emission distributions within the flame deconvoluted with Abel transformation were plugged into a two color method. The experimental results obtained from the present study demonstrate that the two color method as tool for temperature measurements is feasible but can introduce approximately 2% maturement errors in a deconvolution process depending on intervals for the line of sight. The estimated error in temperature measurements was found to be within 18 K at 2000 K.

Development of the Analysis Software for a Sphere-Scanning Radiometer (회전식 방향성 복사측정기 자료해석 Software 개발)

  • 박경윤
    • Korean Journal of Remote Sensing
    • /
    • v.4 no.1
    • /
    • pp.17-29
    • /
    • 1988
  • 본 연구에서는 지면의 표적물 및 하늘과 구름애서 산라되어 나오는 방향성 복사량을 효 율적으로 측정하고, 이들 산란광에 의한 Remote Sensing(원격탐사) 자료해석상의 영향을 조사 연 구하기 위해 만들어진 나선형식으로 회전하며 거의 전반구를 11초 이내에 주사하는 Sphere-Scanning Radiometer의 자료를 분석하는 데 필요한 software(S/W)들을 개발하였다. 개발 된 S/W 에는 개개의 측정자료가 기록될 순간에 측정기의 Field of View (FOV)에 의해 실제로 산란광이 집적된 지표면상의 부분을 시각적으로 나타내 주고 복사강도를 Grey Level로 나타낼 수 있는 도면표시 Algorithm과 FOV각의 크기에 따라 overlap부분의 면적을 계산하는 Algorithm 등이 포함되어 있다. 또한, 실험농장에서 본 radiometer로 측정한 자료를 이 S/W를 사용하여 분 석해 본 결과 밝혀진 몇 가지 방향성 복사량의 특성들을 간단히 소개 하였다.

The Changes of UV-B Radiation at the Surface due to Stratospheric Aerosols (성층권 에어로졸에 의한 지표면 UV-B 복사량 변동)

  • Jai-Ho Oh;Joon-Hee Jung;Jeong-Woo Kim
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.21 no.1
    • /
    • pp.31-46
    • /
    • 1993
  • A radiative transfer model with two-stream/delta-Eddington approximation has been developed to calculate the vertical distributions of atmospheric heating rates and radiative fluxes. The performance of the model has been evaluated by comparison with the results of ICRCCM (Intercomparison of radiative codes in climate models). It has been demonstrated that the presented model has a capability to calculate the solar radiation not only accurately but also economically. The characteristics of ultraviolet-B radiation (UV-B; 280-320nm) are examined by comparison of relation between the flux at the top of atmosphere and that at the surface. The relation of UV-B is quadratic due to the strong ozone absorption in this band. Also, the dependence of the UV-B radiation on the stratospheric ozone depletion and stratospheric aerosol haze due to volcanic eruption on the stratospheric ozone depletion and stratospheric aerosol haze due to volcanic eruption has been tested with various solar zenith angles. The surface UV-B increases as the solar zenith angle increases. The existence of stratospheric aerosols causes an increase in the planetary albedo due to the aerosols' backscattering. The planetary albedo with aerosol's effect has been increases as the solar zenith angle is not sensitive. It may be caused by the fact that the aerosols' scattering effect becomes saturated with the relatively long path length in a large solar zenith angle. Finally, the regional impact of stratospheric aerosols due to volcanic eruption on the intensity of UV-B radiation at the surface has been estimated. A direct effect is that the flux is diminished at the low latitudes, while it is enhanced in the high latitudes by the aerosols' photon trap or twilight effect. In the high latitudes, both aerosols' scattering and ozone absorption have strong and opposite impacts to the surface UV-B radiation is located at the mid-latitudes during spring season in both hemispheres.

  • PDF