• Title/Summary/Keyword: 복부 파형강판

Search Result 18, Processing Time 0.022 seconds

Design and Safety Control in Construction Stage of Prestressed Concrete Box Girder Bridge with Corrugated Steel Web (파형강판 PSC 박스거더 교량의 설계 및 시공중 안전관리)

  • Kim, Kwang-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.87-97
    • /
    • 2008
  • The Ilsun Bridge is the world's longest box girder bridge(801m) with corrugated steel webs and has the widest width($21.2{\sim}30.9m$: tri-cellular cross section) among these kinds of composite girder bridges. It has fourteen spans(50m, 10 at 60m, 50m, 2 at 50.5m) where twelve spans are erected by the incremental launching method and two spans by full staging method. Special topics related to the structural safety of prestressed concrete box girder bridge with corrugated steel web in construction stage and service were reviewed. Investigations focus on the span-to-depth ratio, shear stress of corrugated steel webs and optimization of tile length of steel launching nose. The span-to-depth ratio of Ilsun bridge has been found to be well-planned while the corrugated steel web has been designed highly conservative and it has been observed that the conventional nose-deck interaction equation do not fit well with corrugated steel web bridges. As a result, detailed construction stage analysis was performed to check the stress levels and the safety of preceding design conditions. Finally, from the design review of Ilsun bridge, this study suggests optimal design issues which should be of interest in designing a prestressed concrete box girder bridge with corrugated steel webs.

A Study on the Geometric Parameters that Influence the Trapezoidally Corrugated Webs Under Partial Edge Loading (제형파형강판의 지압 거동에 영향을 미치는 기하학적 인자에 관한 연구)

  • Choi, Yong Ju;Yi, Jong Won;Shin, Chul Ho;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.81-91
    • /
    • 2006
  • The corrugated web is a plate that was manufactured with a corrugated shape. It is widely used in bridges, buildings, and culverts. A girder with a corrugated web can be crippled by local, in-plane compressive loads. Due to its high out-of-plane strength, however, a stiffener is usually not needed in trapezoidally corrugated plates, and the corrugated profile of the web can change the boundary condition of the edge load. Some researchers have studied the strength of the partial-edge loading of the trapezoidally corrugated web, but they have not considered the profile of corrugation in their studies. This paper investigates the influence of the corrugate profile. A parametric study was conducted on the shape parameter using the finite-element method. In this parametric study, the relationship between the corrugated shape and the partial-edge strength was also investigated by dividing the partial-edge strength into the web capacity and the flange capacity.

Lateral-Torsional Buckling Strength of I-girder with Corrugated Steel Webs under Linear Moment Gradient (선형 모멘트 구배가 작용하는 파형강판 I-거더의횡-비틂 좌굴 강도)

  • Moon, Jiho;Lim, Nam-Hyoung;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.149-160
    • /
    • 2012
  • Corrugated steel plates have several advantages such as high resistance for shear without stiffeners, minimization of welding process, and high fatigue resistance. To take advantage of these benefits, several researchers have attempted to use corrugated steel plate as a web of I-girders. The lateral-torsional buckling is the major design aspect of such I-girders. However, lateral-torsional buckling of the I-girder with corrugated steel webs still needs to be investigated especially for a real loading condition such as non-uniform bending. This paper investigated the lateral-torsional buckling strength of the I-girder with corrugated steel webs under linear moment gradient by using finite element analysis. From the results, it was found that the buckling behavior of the I-girder with corrugated steel webs differed depending on the number of periods of the corrugation. Also, a simple equation for the moment gradient correction factor of the I-girder with corrugated steel webs was suggested. The inelastic lateral-torsional buckling strength of the I-girder with corrugated steel webs was then discussed based on current design equations for ordinary I-girders and the results of finite element analysis.

Shear Buckling Behavior for Trapezoidal Corrugated Webs for Bridges (파형강판 복부의 전단좌굴거동 연구)

  • 이필구;윤태양;이학은;이승록
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.513-520
    • /
    • 2003
  • As a trapezoidal corrugated steel plate has the sufficient stiffness out of plane direction without shear stiffener or thick plate, a use in the web of bridge structure is on the increase. However, there are no domestic design guides for shear buckling strength of corrugated plates. Therefore, foreign design specifications are analyzed about application methods and a numerical parametric study is used to get the relationship of the shear strength and geometric boundary conditions for corrugated plates. Elastic buckling finite element analysis is executed through eigenvalue analysis using the eight nodes five freedoms thin shell element. Parameters such as the width and height of panel and the thickness and height of web, are determined considering the factors to influence on the buckling of corrugated plate. Accuracy of shear buckling analysis is evaluated with theory of foreign buckling equations.

  • PDF

Design and Construction of Hybrid Bridge with Corrugated Steel Web by Incremental Launching Method (압출공법에 의한 복부 파형강판 복합교량의 설계 및 시공)

  • Kim Kwang Soo;Jung Kwang Hoe;Sim Chung Wook;Han Jung Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.411-414
    • /
    • 2005
  • This paper presents how to design and construct the Il-sun bridge, the first PSC box girder bridge with Corrugated Steel Web(CSW) in Korea, including 3D analysis results according to construction steps. Also, the 3D analysis for the beams with CSW was performed for the purpose of verifying the role of the flange plate. As the results of this analysis, it is founded that the flange plate plays a role to resist the flexural strength in the nonlinear region. In the near future, we are plan to carry out the load test for these beams with CSW.

  • PDF

A Study on the New Type Rib of Steel Deck Plates (새로운 형태의 강바닥판 리브에 대한 연구)

  • Chu, Seok Beom;Park, Jong Hae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.605-615
    • /
    • 2014
  • The purpose of this study is to propose an economic new type rib by applying plate stiffening methods of the corrugated plate and the honey-comb sandwich panel to the steel deck plate and comparing the new type rib with existing open and closed ribs. The trapezoidal corrugated type, ㄹ type, honey-comb type and ㅁ type ribs are considered as new type ribs and the moment and the steel volume are compared with that of open ribs and closed ribs. The results shows that the honey-comb type and ㅁ type ribs are good in aspects of economic feasibility and the ㅁ type is better than the honey-comb type. To make the ㅁ type rib applicable to the steel deck plate, the sensitivity analysis and parametric study are performed and the system to select the proper section under the particular stress condition is established. The closed rib of real bridges is compared with the ㅁ type rib of the proposed system and it is known that the new type rib is more economic. Therefore, more economic steel deck plates can be achieved by using the system proposed in this study for the plate stiffened with the new ㅁ type rib.