• Title/Summary/Keyword: 복부의 보강

Search Result 53, Processing Time 0.026 seconds

Ductile Behavior of Ultra High Performance Fiber Reinforced Concrete Segmental Box Girder (초고강도 섬유보강 콘크리트 분절형 박스거더의 연성 거동)

  • Jeong, Min-Seon;Park, Sung-Yong;Han, Sang-Mook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.282-289
    • /
    • 2017
  • The flexural behavior tests of UHPC segmental Box girder which has 160MPa compressive strength and 15.4m length were carried out. The test variables are area of prestressing wires, volume fraction of steel fibers and longitudinal reinforcing bars in upper flange and web. PS tendons which has 32 strands of 15.2mm diameter in lower flange, 24 strands and 14 strands in lower flange were arranged and volume fraction of 2%, 1.5% and 1.0% is used in box girder concrete. UHPFRC box girder which has 32 strands in lower flange showed the over reinforcement and brittle behavior. UHPFRC box girder which has 24 strands showed the similar peak load as 32 strands girder and ductile behavior as large deflection. UHPFRC box girder which has 14 strands showed half of the peak load of 24 strands box girder and ductile behavior. After the application of the formular for the reinforcement index to the behavior of the UHPFRC box girders, reinforcement index does not determine the characteristic of behavior of UHPFRC box girder exactly. So the index should consider the dimension precisely and modify the reference value corresponding to the 0.005 strain of the prestressing strands.

A Study on the New Type Rib of Steel Deck Plates (새로운 형태의 강바닥판 리브에 대한 연구)

  • Chu, Seok Beom;Park, Jong Hae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.605-615
    • /
    • 2014
  • The purpose of this study is to propose an economic new type rib by applying plate stiffening methods of the corrugated plate and the honey-comb sandwich panel to the steel deck plate and comparing the new type rib with existing open and closed ribs. The trapezoidal corrugated type, ㄹ type, honey-comb type and ㅁ type ribs are considered as new type ribs and the moment and the steel volume are compared with that of open ribs and closed ribs. The results shows that the honey-comb type and ㅁ type ribs are good in aspects of economic feasibility and the ㅁ type is better than the honey-comb type. To make the ㅁ type rib applicable to the steel deck plate, the sensitivity analysis and parametric study are performed and the system to select the proper section under the particular stress condition is established. The closed rib of real bridges is compared with the ㅁ type rib of the proposed system and it is known that the new type rib is more economic. Therefore, more economic steel deck plates can be achieved by using the system proposed in this study for the plate stiffened with the new ㅁ type rib.

Flexural Design of Double Composite Box Girder over Interior Pier by LRFD Method (LRFD법에 의한 이중합성 박스거더 최대부모멘트 단면 휨 설계)

  • Cho, Eun Young;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.737-749
    • /
    • 2007
  • Flexural design of double composite box girder over the interior pier for three-span continuous bridge was performed by the LRFD method. The maximum span length of the continuous bridge ranged from 80m to 120m and the relative ratio of the span length was assumed to be 1:1.25:1. The girder section was designed for the strength limit state and service limit state with additional design check for constructibility. Before the bottom concrete and compression flange showed a complete composite action, the buckling of lower compression flange was checked. The flexural stiffness and flexural resistance characteristics for the section and for the constituent members such as tension flange, compression flange, and web were analyzed for different thicknesses of the bottom concrete on top of the compression flange. The effect of the distribution ratio of steel between the top and bottom flanges was investigated by analyzing ductility behavior and stress distribution through the girder's depth for several different relative area ratios of steel between the top and bottom flanges. It was found that a total amount of 15% of steel can be saved by applying the double composite system compared with that of the conventional composite system.

Flexural Behavior of Large-Diameter Composite PHC pile Using In-Filled Concrete and Reinforcement (속채움 콘크리트와 철근으로 보강된 대구경 합성 PHC말뚝의 휨성능 평가)

  • Bang, Jin-Wook;Park, Chan-Kyu;Yang, Seong-Yeong;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.109-115
    • /
    • 2016
  • A demand of high bearing capacity of piles to resist heavy static loads has been increased. For this reason, the utilization of large diameter PHC piles including a range from 700 mm to 1,200 mm have been increased and applied to the construction sites in Korea recently. In this study, in order to increase the flexural strength capacity of the PHC pile, the large diameter composite PHC pile reinforced by in-filled concrete and reinforcement was developed and manufactured. All the specimens were tested under four-point bending setup and displacement control. From the strain behavior of transverse bar, it was found that the presence of transverse bar was effective against crack propagation and controlling crack width as well as prevented the web shear cracks. The flexural strength and mid-span deflection of LICPT specimens were increased by a maximum of 1.08 times and 1.19 times compared to the LICP specimens. This results indicated that the installed transverse bar is in an advantageous ductility performance of the PHC piles. A conventional layered sectional analysis for the pile specimens was performed to investigate the flexural strength according to the each used material. The calculated bending moment of conventional PHC pile and composite PHC pile, which was determined by P-M interaction curve, showed a safety factor 1.13 and 1.16 compared to the test results.

Lateral-Torsional Buckling Strength of I-girder with Corrugated Steel Webs under Linear Moment Gradient (선형 모멘트 구배가 작용하는 파형강판 I-거더의횡-비틂 좌굴 강도)

  • Moon, Jiho;Lim, Nam-Hyoung;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.149-160
    • /
    • 2012
  • Corrugated steel plates have several advantages such as high resistance for shear without stiffeners, minimization of welding process, and high fatigue resistance. To take advantage of these benefits, several researchers have attempted to use corrugated steel plate as a web of I-girders. The lateral-torsional buckling is the major design aspect of such I-girders. However, lateral-torsional buckling of the I-girder with corrugated steel webs still needs to be investigated especially for a real loading condition such as non-uniform bending. This paper investigated the lateral-torsional buckling strength of the I-girder with corrugated steel webs under linear moment gradient by using finite element analysis. From the results, it was found that the buckling behavior of the I-girder with corrugated steel webs differed depending on the number of periods of the corrugation. Also, a simple equation for the moment gradient correction factor of the I-girder with corrugated steel webs was suggested. The inelastic lateral-torsional buckling strength of the I-girder with corrugated steel webs was then discussed based on current design equations for ordinary I-girders and the results of finite element analysis.

A Study on the Geometric Parameters that Influence the Trapezoidally Corrugated Webs Under Partial Edge Loading (제형파형강판의 지압 거동에 영향을 미치는 기하학적 인자에 관한 연구)

  • Choi, Yong Ju;Yi, Jong Won;Shin, Chul Ho;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.81-91
    • /
    • 2006
  • The corrugated web is a plate that was manufactured with a corrugated shape. It is widely used in bridges, buildings, and culverts. A girder with a corrugated web can be crippled by local, in-plane compressive loads. Due to its high out-of-plane strength, however, a stiffener is usually not needed in trapezoidally corrugated plates, and the corrugated profile of the web can change the boundary condition of the edge load. Some researchers have studied the strength of the partial-edge loading of the trapezoidally corrugated web, but they have not considered the profile of corrugation in their studies. This paper investigates the influence of the corrugate profile. A parametric study was conducted on the shape parameter using the finite-element method. In this parametric study, the relationship between the corrugated shape and the partial-edge strength was also investigated by dividing the partial-edge strength into the web capacity and the flange capacity.

Long-Term Result of Surgical Treatment for Esophageal Cancer -500 cases- (식도암에서 외과적 요법의 장기성적에 대한 임상적 고찰 -500예 보고-)

  • 임수빈;박종호;백희종;심영목;조재일
    • Journal of Chest Surgery
    • /
    • v.34 no.2
    • /
    • pp.148-155
    • /
    • 2001
  • 배경: 본 연구는 1987년부터 1997년까지 원자력병원에서 수술을 시행한 500명의 식도암환자를 대상으로 하여 휴향적 방법을 통해 조기 및 장기성적, 재발양상, 예후인자 등을 보고하고자 한다. 대상 및 방법: 대상환자 중에서 발병암이 있는 경우, 인두식도 경계부위나 위식도 경계부위 암, 고식적 우회술 또는 인공식도 삽입예 그리고 시험적 개흉술이나 개복술 만을 시행한 경우는 제외 시켰다. 식도 절제는 대부분 우측 개흉술을 이용한 Ivor Lewis 술식을 사용하였고 대부분의 문합은 stapler를 사용하였다. Extended lymph node dissection은 1994년 8월부터 시행하였고 그 이전에는 standard lymph node dissection을 하였다. 96.8%에서 위를 식도 대체장기로 사용하였고 경부에서 절제 및 재건술을 시행한 경우를 제외한 모든 식도재건은 후종격동을 통해 시행하였다. 결과: 474예(94.8%)가 편평상피 세포암이었고 대부분(58.2%)은 중부식도에 위치하였다. 술후병기는 47.4%가 stage III이었고 25%가 stage IIA이었다. 392예에서 근치적 절제가 가능하였고 74예는 고식적 절제를 시행하였으며, 식도열공을 통한 식도절제술과 경부에서의 유리공장 이식술을 시행한 34예는 위분류에서 제외하였다. 술후 유병율은 38.4%이었고 수술 사망률은 5.8%로 호흡기 감염, 문합부 유출이 주요 원인이었다. 대상환자의 99.8%에서 추적은 가능하였고 수술사망 예를 포함한 전체환자의 1, 2, 5년 생존율은 각각 63.5%, 38.9%, 19.4% 이었다. Standard lymph node dissection 그룹에서의 1, 2, 5년 생존율이 60.7%, 35.9%, 16.9%이었으나 extended lymph node dissection그룹에서는 1, 2, 4년 생존율이 70.2%, 46.5%, 30.9%이었다. 근치적 절제의 경우는 1, 2, 5년 생존률이 69.4%, 43.9%, 21.9%이었고, 고식적 절제의 경우는 37.8%, 17.6%, 7.3%이었다. 수술사망을 제외한 근치적 절제술과 extended lymph node dissection을 함께 시행한 경우의 4년 생존율은 35.6%이었다. 수술후 재발은 226예에서 발견되었고 주로 국소임파절(69%; 경부, 종격동, 복부)이었으며, 전신재발은 간, 폐, 뼈, 뇌 등의 순이었다. 결론: 저자들은 적절한 술후 환자관리가 선행되어야 하지만 근치적 절제와 광범위한 임파절 절제가 장기성적의 향상에 필수적 요소이고, 진행된 식도암에 있어서는 보다 효과적인 보강적 복합치료가 연구되어야 할 것으로 생각된다.

  • PDF

Experiment of Flexural Behavior of Composite Beam with Steel Fiber Reinforced Ultra High Performance Concrete Deck and Inverted-T Steel Girder (강섬유로 보강된 초고성능 콘크리트 바닥판과 역T형 강거더 합성보의 휨거동 실험)

  • Yoo, Sung-Won;Ahn, Young-Sun;Cha, Yeong-Dal;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.761-769
    • /
    • 2014
  • Ultra high performance concrete (UHPC) has been developed to overcome the low strengths and brittleness of conventional concrete. Considering that UHPC, owing to its composition and the use of steel fibers, develops a compressive strength of 180 MPa as well as high stiffness, the top flange of the steel girder may be superfluous in the composite beam combining a slab made of UHPC and the steel girder. In such composite beam, the steel girder takes the form of an inverted-T shaped structure without top flange in which the studs needed for the composition of the steel girder with the UHPC slab are disposed in the web of the steel girder. This study investigates experimentally and analytically the flexural behavior of this new type of composite beam to propose details like stud spacing and slab thickness for further design recommendations. To that goal, eight composite beams with varying stud spacing and slab thickness were fabricated and tested. The test results indicated that stud spacing running from 100 mm to 2 to 3 times the slab thickness can be recommended. In view of the relative characteristic slip limit of Eurocode-4, the results showed that the composite beam developed ductile behavior. Moreover, except for the members with thin slab and large stud spacing, most of the specimens exhibited results different to those predicted by AASHTO LRFD and Eurocode-4 because of the high performance developed by UHPC.

Development and Experimental Performance Evaluation of Steel Composite Girder by Turn Over Process (단면회전방법을 적용한 강합성 소수주거더 개발 및 실험적 성능 평가)

  • Kim, Sung Jae;Yi, Na Hyun;Kim, Sung Bae;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.407-415
    • /
    • 2010
  • In Korea, more than 90% of the total number of steel bridges built for 40~70 m span length is a steel box-girder bridge type. A steel box-girder bridge is suitable for long span or curved bridges with outstanding flexural and torsional rigidity as well as good constructability and safety. However, a steel box-girder bridge is uneconomical, requiring many secondary members and workmanship such as stiffeners and ribs requiring welding attachments to flanges or webs. Therefore, in US and Japan, a plate girder bridge, which is relatively cheap and easy to construct is generally used. One type of the plate girder bridge is the two- or three-main girder plate bridge, which is a composite plate girder bridge that minimizes the number of required main girders by increasing the distance between the adjacent girders. Also, for the simplification of girder section, the stiffener which requires attachment to the web is not required. The two-main steel girder plate bridge is a representative type of plate girder bridges, which is suitable for bridges with 10 m effective width and has been developed in the early 1960s in France. To ensure greater safety of two- or three-main girder plate bridges, a larger steel section is used in the bridge domestically than in Europe or Japan. Also, the total number of two- or three-main girder plate bridge constructed in Korea is significantly less than the steel box girder bridge due to a lack of designers' familiarity with more complex design detailing of the bridge compare to that of a steel box girder bridge design. In this study, a new construction method called Turn Over method is proposed to minimize the steel section size used in a two- or three-main girder plate bridge by applying prestressing force to the member using confining concrete section's weight to reduce construction cost. Also, a full scale 20 m Turn Over girder specimen and a Turn Over girder bridge specimen were tested to evaluate constructability and structural safety of the members constructed using Turn Over process.

Flexural Behavior of Segmental U-Girder and Composite U-Girder Using Ultra High Performance Concrete (초고강도 섬유보강 콘크리트를 사용한 분절형 U거더 및 합성 U거더의 휨거동)

  • Lee, Seung-Jae;Makhbal, Tsas-Orgilmaa;Kim, Sung-Tae;Han, Sang-Mook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.290-297
    • /
    • 2017
  • The flexural behavior tests of UHPC segmental U-girder and composite U-girder which has 160MPa compressive strength and 15.4m length were carried out. The test variables are volume fraction of steel fibers and slab over the U-girder. Each U-girder has longitudinal re-bars in web and lower flange. PS tendons which has 2 of 15.2mm diameter in upper flange and PS tendons which has 7 of 15.2mm diameter in lower flange were arranged and prestressed at onetime in U-girder connection stage. Enough strong prestressing force which applied to U-girder due to ultra high performance concrete strength can withstand the self weight and dead load in U-girder stage. By comparison with the brittle behavior of U-girder, composite U-girder showed the stable and ductile behavior. After the construction of slab over U-girder, flexural load capacity of composite U-girder can bear the design load in final construction stage with only one time prestressing operation which already carried out in U-girder stage. This simple prestressing method due to the ultra high strength concrete have the advantage in construction step and cost. The shear key which has narrow space has the strong composite connection between ultra high strength concrete U-girder and high strength concrete slab didn't show any slip and opening right before failure load.