• Title/Summary/Keyword: 보행 제어

Search Result 413, Processing Time 0.028 seconds

A Study on the Preemption Control Strategies Considering Queue Length Constraints (대기행렬길이 제약조건을 고려한 Preemption 제어 전략에 관한 연구)

  • Lee, Jae-Hyeong;Lee, Sang-Su;O, Yeong-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.179-187
    • /
    • 2009
  • Currently, the signalized intersections in Korea are operated without providing an emergency vehicle preemption control strategy. Thus, it might threaten the safety of the pedestrians and drivers on highways when an emergency vehicle faces congested traffic conditions. The existing preemption control is activated when an emergency vehicle is detected along a path. This enables emergency vehicles to progress uninterrupted, but it also increases the delay of other vehicles. In this paper, a revised preemption control strategy considering queue length restrictions is proposed to make both a progressive movement of an emergency vehicle and reduce delay of other vehicles simultaneously. By applying the preemption control strategy through a simulation study, it was shown that delay of an emergency vehicle decreased to 44.3%-96.1% and speed increased to 8.8%-42.0% in all 9 cases as compared with a conventional signal control. The existing preemption control is superior for oversaturated conditions (v/c >1.0) or a link length less than 200m. However, the preemption control considering queue length constraints shows better performance than the existing preemption control when the v/c is less than 0.8 and a link length is longer than 500m.

Implementation of Multiple Nonlinearities Control for Stable Walking of a Humanoid Robot (휴머노이드 로봇의 안정적 보행을 위한 다중 비선형 제어기 구현)

  • Kong, Jung-Shik;Kim, Jin-Geol;Lee, Bo-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.215-221
    • /
    • 2006
  • This paper is concerned with the control of multiple nonlinearities included in a humanoid robot system. A humanoid robot has some problems such as the structural instability, which leads to consider the control of multiple nonlinearities caused by driver parts as well as gear reducer. Saturation and backlash are typical examples of nonlinearities in the system. The conventional algorithms of backlash control were fuzzy algorithm, disturbance observer and neural network, etc. However, it is not easy to control the system by employing only single algorithm since the system usually includes multiple nonlinearities. In this paper, a switching Pill is considered for a control of saturation and a dual feedback algorithm is proposed for a backlash control. To implement the above algorithms, the system identification is firstly performed for the minimization of the difference between the results of simulation and experiment, and then the switching Pill gains are determined using genetic algorithm with some heuristic approach. The performance of the switching Pill controller for saturation and the dual feedback for backlash control is investigated through the simulation. Finally, it is shown that the implemented control system has good results and can be applied to the real humanoid robot system ISHURO.

Detecting and Counting People system based on Vision Sensor (비전 센서 기반의 사람 검출 및 계수 시스템)

  • Park, Ho-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • The number of pedestrians is considered essential information which can be used to control a person who makes a entrance or a exit into a building. The number of pedestrians, also, can be used to help to manage pedestrian traffic and the volume of pedestrian flow within the building. Due to the fact there is incorrect detection by occluded, shadows, and illumination, however, difficulty can arise in existing system which is for detection and counts of a person who makes a entrance or a exit into a building. In this paper, it is minimized that the change of illumination and the effect of shadow through the transmitted image from camera which is created and processed with great adaptability. The accuracy of the calculations can be increase as well by using Kalman Filter and Mean-Shift Algorithm in order to avoid overlapped counts. As a result of the test, it is proved that the count method that shows the accuracy of 95.4% should be effective for detection and counts.

Development of a Legged Walking Robot Based on Jansen Kinetics (얀센 키네틱스를 기반으로 한 보행 로봇 개발)

  • Kim, Sun-Wook;Kim, Yeoun-Gyun;Jung, Hah-Min;Lee, Se-Han;Hwang, Seung-Gook;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.509-515
    • /
    • 2010
  • In this paper, the mechanism that can walk efficiently in wet land or sand area is proposed. A vision camera is attached to the mechanism, which makes a kind of biologically inspired robot for coast guard. This visionary information enables the biologically inspired robot to react in peripheral environment by a soft-computing algorithm. In addition, the biologically inspired robot can achieve the mission appointed by a programmer connecting with outside, based on RF and Blue-tooth communication module. Therefore, the purpose of this research is the implementation of the biologically inspired robot that can operate most adaptively in sand and wet surface based on Theo Jansen mechanism.

Use of learning method to generate of motion pattern for robot (학습기법을 이용한 로봇의 모션패턴 생성 연구)

  • Kim, Dong-won
    • Journal of Platform Technology
    • /
    • v.6 no.3
    • /
    • pp.23-30
    • /
    • 2018
  • A motion pattern generation is a process of calculating a certain stable motion trajectory for stably operating a certain motion. A motion control is to make a posture of a robot stable by eliminating occurring disturbances while a robot is in operation using a pre-generated motion pattern. In this paper, a general method of motion pattern generation for a biped walking robot using universal approximator, learning neural networks, is proposed. Existing techniques are numerical methods using recursive computation and approximating methods which generate an approximation of a motion pattern by simplifying a robot's upper body structure. In near future other approaches for the motion pattern generations will be applied and compared as to be done.

Distance measurement systems implemented for ASV (ASV를 위한 차량탑재용 거리계측기술)

  • 장경영
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.45-54
    • /
    • 1996
  • 최근 자동차의 안전성을 한층 강조하는 ASV 개념의 도입이 보편화되면서 이를 구현하기 위한 여러가지 기능들이 고안되어 지고 있는데, 그 중에서도 추돌경보 및 회피기능, 야간보행자 검지기능, 후측방 장애물검지 기능, 차간거리 일정유지 제어기능 등에 있어서 공통적으로 주행중 거리계측이 필요하다. 본고에서는 ASV기술에서 필요하고 또한 중요한 핵심기술인 차량탑재용 거리계측기술에 대하여 현재 실용화되어 있거나 실용가능성이 있는 기술을 수단과 방식으로 나누어 각각의 원리와 특징에 대해 소개하였다. 수단으로서는 초음파, 레이저, 밀리파를 제시하였으며, 방식으로는 펄스시간차방식, 진폭변조 및 위상복조방식, 주파수변조방식을 소개하였다. 또한 비젼은 이들과는 계측원리와 신호처리가 매우 상이하고 본특집에서 별도로 상세히 소개될 것이기 때문에 간략히 소개하였다.

  • PDF

The Motion Control of a Quadruped Working Robot Using Wireless Sensor Network (무선 센서 네트워크가 탑재된 사족 보행로봇 제어)

  • Seo, Kyu-Tae;Kim, Ki-Woo;Sim, Jae-Yang;Oh, Jun-Young;Lim, Sung-Duk;Lee, Bo-Hee;Kong, Jung-Shik;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.499-501
    • /
    • 2004
  • This paper deals with the implementation of a quadruped working robot using wireless sensor network with TinyOS. It is often required to install real time OS and wireless network in the mobile robot field since robots work alone without human intervention and also exchanging their information between robot systems. The suggested controller utilizes a built-in wireless network OS and makes the variance action related with human-kindly motions for a quadruped walking robot. In addition, a kinematics analysis of its structure and control architecture of robot system is suggested and verified the usefulness through the real experiment.

  • PDF

Dynamic analysis and control of a robot leg with a shock absorber (완충기를 가진 로봇다리의 동역학 해석 및 동적 보행제어)

  • Oh, Chang-Geun;Kang, Sung-Chul;Lee, Soo-Yong;Kim, Mun-Sang;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.768-778
    • /
    • 1998
  • Human beings usually absorb a shock from terrain during walking through the damping effects of joints, muscles and skin. With this analogy, a robot-leg with a shock absorber is built to absorb the impact forces at its foot during high-speed walking on irregular terrain. To control the hip position while walking, the dynamic controller suitable for high speed walking is designed and implemented based on a dynamic model by Kane's equation. The hip position tracking performances of various controllers (PID controller, computed torque controller and feedforward torque controller) are compared through the experiments of the real robot-leg.

A Design of Certificate-based Encryption System for Maintaining ECU Security (ECU 보안성 유지를 위한 인증서 기반 암호시스템 설계)

  • Yoo, Joseph;Kim, Keecheon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.242-245
    • /
    • 2017
  • 기존의 엔진제어기(ECU)는 주요 mapping data(ECU에 대응되는 값)들에 대해서 기밀성과 무결성을 제공하는 보호 기법의 부재로 인해 임의적인 튜닝이 가능하다는 특징이 존재하였다. 이로 인해 자칫 잘못된 튜닝이나 악의적인 조작이 발생할 수 있는 여지가 있으며, 이는 차량 엔진 및 조작의 안정성을 떨어뜨림과 동시에 운전자 및 보행자들의 안전을 위협할 수 있다는 문제가 있다. 이에 본 논문에서는 ECU에 적용되는 Firmware의 주요 mapping data를 안전하게 암호화하는 방식을 제안하며, 이 과정에서는 차량의 식별 및 ECU에 mapping 되는 data의 무결성 검증을 위해 인증서를 사용하는 방식을 제안한다. 본 논문의 제안을 통해 주요 mapping data를 안전하게 보호하는 기술을 통해 차량의 안전성을 유지할 수 있다.

A Study on Design of FES Hardware System for Walking of Paraplegics (하반신마비 환자의 보행기능 제어를 위한 FES하드웨어 시스템 설계에 관한 연구)

  • 김근섭;김종원
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 1991
  • This paper describes and discusses the employment of HMG pattern analysis to provide upper-motor-neuron paraplegics with patient-responsive control of FES ( functional electrical stimulation) for the purpose of walker-supported walking. The use of above-lesion EMG signals as a solution to the control problem is considered. The AR(autoregressive)parameters are identified by time-varying nonstationary Kalman filler algorithm using DSP chip and classified by fuzzy theory. The control and stimuli part of the below-lesion are based on micro-processor(8031). The designed stimulator is a 4-channel version. The experiments described above have only attempted to discriminate between standing function and sit-down function A further advantge of the this system Is applied for motor rehabilitation of social readaption of paralyzed humans.

  • PDF