• Title/Summary/Keyword: 보조전원장치

Search Result 139, Processing Time 0.027 seconds

An Exploratory Study on the Applicability of Thin-Film Photovoltaic Cells for Auxiliary Power Supply of a Personal Rapid Transit (PRT) Vehicle (PRT 차량의 보조 전력공급을 위한 유연소재 태양전지의 적용 가능성 연구)

  • Kang, Seok-Won;Han, Soo-Jin;Jeong, Rag-Gyo;Oh, Hyuck Keun;Ko, Sangwon;Choi, Dooho
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.2
    • /
    • pp.94-99
    • /
    • 2014
  • Recently, trends in new transportation system development have been primarily focused on sustainable and ecofriendly mobility solutions. The personal rapid transit (PRT) system has been considered a promising candidate in this category; its competitiveness is being improved through convergence with cutting-edge electric vehicle (EV) technologies. However, battery-powered vehicles pose difficult technical challenges in attempts to achieve reliable and efficient operation. In this study, a design approach for a solar-power assisted PRT system is presented with small-scale demonstrations aimed at circumventing challenges facing its adoption, as well as helping speed the transition to electric-powered ground transportation. From the results, it is expected that flexible photovoltaic (PV) cells will be able to supply 11% of the power required by the service equipment installed in a prototype vehicle. In particular, flexible photovoltaic (PV) cells are advantageous in terms of cost, weight, and design considerations. Most importantly, the cells' flexibility and attach-ability are expected to give them great potential for extended application in various areas.

Recent R&D Trends of Solid Oxide Fuel Cell Power Generation System (고체산화물 연료전지 발전시스템의 최근 연구 개발 동향)

  • Pyo, Seong-Soo;Lim, Tak-Hyoung;Lee, Seung-Bok;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.119-130
    • /
    • 2009
  • This article reviews recent R&D trends in SOFC development with an emphasis on industries that can produce the SOFC stack and power generation system. SOFC is an electrochemical device that can convert the chemical energy of fuel into the electrical energy with environment friendly system and high efficiency. SOFC power generation system could be classified as the portable power generation system, auxiliary power unit(APU), residential power generation(RPG) and large size distributed power generation. In the case of more than 10kW system, the major R&D trends are focused on the tubular type SOFC system with high efficient and long term stability to meet the commercialization of SOFC power generation system.

Doors open and close during regenerative energy harvester developed (자동문 개폐 시 회생에너지 하베스트 개발)

  • Park, Won-hyeon;Kim, Min;Jeong, Jae-hoon;Lee, Dong-heon;Byun, Gi-sik;Kim, Gwan-hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.257-258
    • /
    • 2015
  • Korean power consumption of the electrical supply problems due to excess demand is repeated every year, the interest in energy increasing social and personal cost has been subject to the number of ways to reduce this cost increases. Automatic doors and automatic door installation market is increasing every year and frequently, when used in general commercial and communal porch consumption based on average 300 times a day power is 70[W] degree is a monthly average usage is about 50.4[KW]. The level can not ignore the power consumption due to switching frequency is large. In this paper, by converting the energy to be discarded in the automatic doors to the inverter and the regenerative energy and to develop control systems for power regeneration to reduce the power consumption by utilizing automatic contact auxiliary power.

  • PDF

A Study on Electromagnetic Compatibility Performance Evaluation of Power Conditioning System for Residential Fuel Cell (가정용 연료전지 전력변환장치 전자파적합성 성능 평가 연구)

  • Choi, Young-Joo;Nam, Tae-Ho;Lee, Eun-Kyung;Lee, Duk-Gwon;Lee, Jung-Woon;Lee, Seung-Kuk;Moon, Jong-Sam
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.23-29
    • /
    • 2017
  • Solar and wind energy among the renewable energy produce irregular power because resource is difficult to control. When connected to grid have unstable. However, when the fuel cell system is connected to grid more stable because regular frequency and output power based on controllable hydrogen energy. To using fuel cell system in the household, it is important that the safety performance of power conditioning system(PCS) and it is important that evaluation method of electromagnetic compatibility(EMC). In this study, we consider that introduce power-frequency magnetic field immunity test before analyzed that compare with the EMC of the international standards and KGS AB 934 PC53. Also, we conduct that actual assessment and study on available the quantitative analysis as using complementary indicator.

Analysis of Loss of HVAC for Nuclear Power Plant (원전의 공기조화설비(HVAC) 상실사고 분석방법)

  • Song, Dong-Soo
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.90-94
    • /
    • 2014
  • Environmental qualification (EQ) for safety-related equipment is required to ensure that those equipment will perform their required function even under the harsh environment conditions arising from design basis accident in the nuclear power plant. As a part of EQ program, the room temperature analysis in case of a loss of Heating, Ventilation, and Air Conditioning(HVAC) system was carried out to ensure the operability of the safety-related equipment of a nuclear power plant randomly chosen among the Korean nuclear power plants. In this paper, this analysis was performed in the conservative perspective using GOTHIC code. The room temperature analysis includes selecting the rooms in which the safety related equipment are located but not supported by safety related HVAC and determining the temperature of the selected rooms. Target rooms for the analysis consist of W229/W237 (Aux. feedwater pump room), W232 (Aux. feedwater tank room) and W230 (Equipment passageway). The results showed the temperature range from $43^{\circ}C$ to $83^{\circ}C$, in 72 hours after a loss of HVAC. Those values are far below of generic EQ temperature($171^{\circ}C$). Therefore, it is satisfied with EQ requirement of temperature limits on safety related equipment.

Characterization of Cold Hollow Cathode Ion Source by Modification of Electrode Structure (전극 구조 변화에 따른 Cold Hollow Cathode Ion Source의 특성 변화)

  • Seok, Jin-Woo;Chernysh, V.S.;Han, Sung;Beag, Young-Hwoan;Koh, Seok-Keun;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.967-972
    • /
    • 2003
  • The inner-diameter 5 cm cold hollow cathode ion source was designed for the high current density and the homogeneous beam profile of ion beam. The ion source consisted of a cylindrical cathode, a generation part of magnetic field, a plasma chamber, convex type ion optic system with two grid electrode, and DC power supply system. The cold hollow cathode ion sources were classified into standard type (I), electron output electrode modified type (II). The operation of the ion source was done with discharge current, ion beam potential and argon gas flow rate. The modification of electron output electrode resulted in uniform plasma generation and uniform area of ion beam was extended from 5 cm to 20 cm. Improved ion source was evaluated with beam uniformity, ion current, team extraction efficiency, and ionization efficiency.

A Case Study on the Implementation of a River Water Level Monitoring System using PLC(Programmable Logic Controller) and Public Telecommunication Network (PLC(Programmable Logic Controller)와 공중통신망을 이용한 하천수위감시시스템 구축 사례 연구)

  • Kim, Seokju;Kim, Minsoo
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.4
    • /
    • pp.1-17
    • /
    • 2015
  • A river water level monitoring system which prevents salt water damages and effectively excludes floods has been developed to contribute efficient operation of Nakdong river estuary barrage. The system can be used for monitoring upstream conditions more quickly and do appropriate responses over changes. Telemetry and telecontrols using PLCs have been built at the three sites that directly influence on the operation of barrage gates, and are linked to Nakdong river estuary barrage's IOS (Integrated Operation System) through public communication networks. By using PLC, the system can achieve even higher reliability and versatility than before as well as easy management. By power control devices, we can remotely control the power of PLCs to treat the minor troubles instantly without going on-sites. The power control devices also save data in preparation for the cases of communication failures. The system uses ADSL (FTTH) as a main network between SCADA server and PLCs, and CDMA (M2M) as a secondary network. In order to compensate security vulnerabilities of public communication network, we have installed the VPNs for secure communication between center and the observation stations, just like a dedicated network. Generally, river water level observations have been used custom-manufactured remote terminals to suit their special goals. However, in this case, we have established a system with open architecture considering the interface between different systems, the ease of use and maintenance, security, price, etc.

Impedance Characteristics of 3 Layered Green Fluorescent OLED (3층 구조 녹색 형광 OLED의 임피던스 특성)

  • Gong, Do-Hun;Im, Ji-Hyeon;Choe, Seong-U;Park, Yun-Su;Lee, Gwan-Hyeong;Ju, Seong-Hu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.140-140
    • /
    • 2016
  • 유기전계발광소자 (Organic Light Emitting Diode : OLED)는 보조광원이 필요 없고 천연색 표현이 가능하며, 낮은 소비 전력 및 저전압 구동 등의 장점으로 이상적인 디스플레이 구현이 가능하여 차세대 디스플레이로써 많은 이목을 끌고 있으나 제한된 수명과 안정성의 문제점을 안고 있다. 따라서 OLED의 열화 원인을 분석하고 수명을 연장하기 위한 체계적인 방법과 기술 개발이 중요하다. Impedance Spectroscopy는 이온, 반도체, 절연체 등의 벌크 또는 계면 영역의 전하 이동을 조사하는데 사용될 수 있어, OLED에서도 Impedance Spectroscopy를 이용하여 전하수송과 전자주입 메커니즘 등 폭넓은 전기적 정보를 얻을 수 있다. 본 연구에서는 Impedance Spectroscopy를 이용하여 경과시간에 따른 OLED의 임피던스 특성을 측정하여 열화 메커니즘을 분석하였다. 본 연구에서 OLED는 ITO / 2-TNATA (4,4,4-tris2-naphthylphenyl-aminotriphenylamine) / NPB (N,N'-bis-(1-naphyl)-N, N'-diphenyl-1,1'- biphenyl-4,4'-diamine) / Alq3 (tris(quinolin-8-olato) aluminum) / Liq / Al으로 구성된 녹색 형광 OLED를 제작하였다. OLED의 전계 발광 특성을 측정하기 위한 전원 인가장치로 Keithley 2400을 사용하여 전압과 전류를 인가하였고, 소자에서 발광된 휘도 및 발광 스펙트럼은 Photo Research사의 PR-650 Spectrascan을 사용하여 암실 환경에서 측정하였다. 임피던스 스펙트럼은 컴퓨터 제어 프로그래밍이 가능한 KEYSIGHT사의 E4990A를 사용하여 측정하였다. 임피던스 측정 전압은 0 V부터 2 V 간격으로 8 V까지, 주파수는 20 Hz에서 2 kHz의 범위로 설정하여 측정하였다. I-V-L과 임피던스 특성은 24 시간의 간격을 두고 실온에서 측정하였다. 그림은 경과시간에 따른 녹색 형광 OLED의 인가전압 2 V, 6 V의 Cole-Cole plot을 나타낸 것이다. 문턱전압 미만인 인가전압 2 V에서는 소자를 통하여 전류가 흐르지 않아 큰 반원 형태를 나타내었고, 시간이 경과함에 따라 소자 제작 직후엔 실수 임피던스의 최댓값이 $8982.6{\Omega}$에서 480 시간 경과 후엔 $9840{\Omega}$으로 약간 증가하였다. 문턱전압 이상인 인가전압 6 V에서는 소자 제작 직후 실수 임피던스의 최댓값이 $108.2{\Omega}$으로 작은 반원 형태를 나타내나 시간이 경과함에 따라 방사형으로 증가하는 것을 확인 할 수 있었고, 672 시간 경과 후엔 실수 임피던스의 최댓값이 $9126.9{\Omega}$으로 문턱 전압 미만 일 때와 유사한 결과를 나타내었다. 이러한 임피던스의 증가 현상은 시간이 경과함에 따라 OLED의 열화에 의한 것으로 판단된다.

  • PDF

Superconducting Thick Film by Lateral Field Assisted EPD (측면보조전계 인가 전기영동전착 초전도후막)

  • 전용우;소대화;조용준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.679-685
    • /
    • 2004
  • Although the electrophoretic deposition method has the advantage of simple processing procedure, less fabrication facilities, and easier control for deposition thickness and wire length, providing economical and technical merits, it also has the disadvantages of cracking and porosity phenomena, requiring an improved processing method for higher particle density and constant particle orientation. we have developed an optimization method to increase the particle density and to unify its orientation, and have performed a study to overcome the cracking and porosity problems in the fabricated superconductor. In order to improve the surface uniformity and the conduction properties of the fabricated YBCO thick films, a system that applies alternate voltage vertically has been developed for the first time and applied to the electrophoretic deposition process. The applied alternate electric field caused a force to be exerted on each YBCO particle and resulted in a rotation of the particle in the direction of applied electric field, accomplishing a uniform particle orientation. We name this process as the shaky-aligned electrophoretic deposition method. For commercial utilization and efficiency, in this dissertation, alternating voltage of 60 Hz and 25 ∼ 120 V/cm was proposed to apply it as a subsidiary source for shaky-flow deposition so that the fabricated thin film showed uniform surface morphology with less voids and cracks and Tc,zero of 90 K and the critical current density of 3419 A/$cm^2$.