• Title/Summary/Keyword: 보정가공

Search Result 160, Processing Time 0.032 seconds

Improving Dimensional Accuracy of Micropatterns by Compensating Dynamic Balance of a Roll Mold (롤금형의 동적밸런스 보정을 통한 미세패턴 형상정밀도 향상)

  • Lee, Dong-Yoon;Hong, Sang-Hyun;Song, Ki-Hyeong;Kang, Eun-Goo;Lee, Seok-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.33-37
    • /
    • 2011
  • In the fields of display, optics, and energy, it is important to improve micropattern-machining technology for achieving small patterns, large surface areas, and low cost. Unlike flat molds, roll molds have the following advantages: they can be manufactured within a short time, larger surface areas can be obtained, and continuous molding can be achieved. In this study, we aim to investigate the causes for errors in the shapes for a micropattern-machining process, and we show that by compensating the dynamic balance of roll molds, the dimensional accuracy of machined parts can be improved. The experimental results show that dynamic-balance compensation for a roll mold reduced the mass unbalance and the vibrations of the roll mold, and as a result, the dimensional accuracy of machined micropatterns has been improved.

A Study on Thermal Deformation Compensation in the Molding of Aspheric Glass Lenses (비구면 유리렌즈 열변형 보정에 관한 연구)

  • Lee, Dong-Kil;Kim, Hyun-Uk;Cha, Du-Hwan;Lee, Hak-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.22-26
    • /
    • 2010
  • Recently, due to the tremendous growth of media technology, demands of the aspheric glass lens which is a high-performance and miniaturized increase gradually. Generally, the aspheric glass lens is manufactured by Glass Molding Press (GMP) method using tungsten carbide (WC) mold core. In this study, the thermal deformation which was occurred by GMP process was analyzed and applied it to compensate the aspheric glass lens. The compensated lens was satisfied that can be applied to the actual specifications.

Development of an Automatic Tool Compensation System in NC Lathe Machine (NC 선반가공에서 자동공구보정시스템의 개발)

  • Ju, Sang-Yoon;Kang, Byeung-Phil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.47-54
    • /
    • 1999
  • Tool wear is one of major causes occurring defectives in NC machining. In this paper we developed an automatic tool compensation system for the NC lathe machining. The system compensates machining error without any help of operators whenever the specification of a part is out of a tolerance. The configuration of the automatic compensation system consists of a NC lathe, an autoloader, a sensor, and a PLC. The system is operated as follows. A workpiece loaded by the autoloader is machining on the NC lathe. Once the workpiece is machined to be turned to a part, it is moved onto the sensor to be measured. If the sensor detects a part out of tolerance, a tool compensation is made in the NC controller. The system gives a help in increasing the productivity by reducing occurrence of defective parts as well as by eliminating time for the tool compensation. Besides the productivity increase, the system calculates cumulative usage time of the tool and notices the tool replace time to a worker by an alarm signal. A case is introduced to show that the system can be applied effectively in a shop.

  • PDF

A Study on the Linear Compensation Method of Ideal Surface Roughness to Actual Roughness in Milling (밀링에서 기하학적 표면조도와 측정조도의 선형보정 방법에 관한 연구)

  • Seo, Sang-Won;Kim, Dong-Hyeon;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.15-20
    • /
    • 2016
  • In this study, a numeric model for the prediction of ideal surface roughness in the rounded end mill was derived from the shape of the tool and feed per tooth. The model is compared with the well-known model of a ball and flat end mill. The ideal surface roughness was matched to the actual surface roughness by the linear equation, from which the empirical constant should be gathered from the test machining systems in the industry.

Calibration of 6-DOF Parallel Mechanism Through the Measurement of Volumetric Error (공간오차 측정을 통한 6자유도 병렬기구의 보정)

  • Oh, Yong-Taek;Saragih, Agung S.;Kim, Jeong-Hyun;Ko, Tae-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.48-54
    • /
    • 2012
  • This paper introduces the kinematic calibration method to improve the positioning accuracy of a parallel mechanism. Since all the actuators in the parallel mechanism are controlled simultaneously toward the target position, the volumetric errors originated from each motion element are too complicated. Therefore, the exact evaluation of the error sources of each motion element and its calibration is very important in terms of volumetric errors. In the calibration processes, the measurement of the errors between commands and trajectories is necessary in advance. To do this, a digitizer was used for the data acquisition in 3 dimensional space rather than arbitrary planar error data. After that, the optimization process that was used for reducing the motion errors were followed. Consequently, Levenberg-Marquart algorithm as well as the error data acquisition method turned out effective for the purpose of the calibration of the parallel mechanism.

A Study on Automatic Compensation of Thermal Deformation Error for High Speed Feeding System (고속이송계의 열변형오차 자동보정에 관한 연구)

  • Ko, Hai-Ju;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.57-64
    • /
    • 2007
  • In the recent years, development of machine tool with high speed feeding system have brought a rapid increase in productivity. Practically, thermal deformation problem due to high speed is, however, become a large obstacle to realize high precision machining. In this study, therefore, the construction of automatic error compensation system to control thermal deformation in high speed feeding system with real time is proposed. To attain this purpose, high speed feeding system with feeding speed 60mm/min is developed and experimental equation for relationship between thermal deformation and temperature of ball screw shaft using multiple regression analysis is established. Furthermore, in order to analyze thermal deformation error, compensation coefficient is determined and thermal deformation experiments is carried out. From obtained results, it is confirmed that automatic error compensation system constructed in this study is able to control thermal deformation error within $15{\sim}20{\mu}m$.

  • PDF

The Study on Application of Reverse Engineering on Correction of a Product Error by Rapid Prototyping (쾌속조형 제품 오차 보정에서 역설계 활용에 관한 연구)

  • Jeon, Eon-Chan;Kim, Soo-Yong;Han, Min-Sik;Kim, Tae-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.8-14
    • /
    • 2007
  • Recently, the variation of industry has been changed faster and faster than before. It is using Rapid Prototyping Method to cope with fast change. This technology used to make a prototype, master pattern of manufactured product by vacuum casting, and so on. But this method has errors by contraction as a necessity. this error has been caused because the shape of prototype is smaller than CAD data. So we must solve the problem about precision of product. Therefore in this study, we will reduce the errors like contraction of material by manufacturing of rapid prototype product. Through these courses, we will enhance a precision of product.

  • PDF