• 제목/요약/키워드: 보정가공

검색결과 160건 처리시간 0.032초

롤금형의 동적밸런스 보정을 통한 미세패턴 형상정밀도 향상 (Improving Dimensional Accuracy of Micropatterns by Compensating Dynamic Balance of a Roll Mold)

  • 이동윤;홍상현;송기형;강은구;이석우
    • 대한기계학회논문집A
    • /
    • 제35권1호
    • /
    • pp.33-37
    • /
    • 2011
  • 디스플레이, 광학, 에너지 분야 부품의 미세형상화, 대면적화, 저가격화 요구에 대응하기 위하여 대면적 롤금형의 미세형상 가공기술개발에 대한 필요성이 대두되고 있다. 롤금형은 기존의 평판금형에 비해서 금형의 납기가 빠르고, 대면적화에 용이하며, 연속성형이 가능하다는 장점을 갖고 있다. 본 연구는 롤금형에 미세형상을 가공할 때 발생하는 형상오차의 원인을 규명하는 것을 목적으로 하고 있으며, 가공 현장에서 개선 가능한 요소로서 롤금형의 동적밸런싱 보정방안을 제시하고 있다. 기존보다 정밀한 동적밸런싱 보정을 통하여 롤금형의 질량불평형이 최대 90%까지 감소되었고, 롤금형의 진동량이 0.044 mm/sec (RMS)에서 0.004mm/sec (RMS)로 감소하였으며, 결과적으로 미세패턴의 형상정밀도가 개선되는 것을 확인할 수 있었다.

비구면 유리렌즈 열변형 보정에 관한 연구 (A Study on Thermal Deformation Compensation in the Molding of Aspheric Glass Lenses)

  • 이동길;김현욱;차두환;이학석;김혜정;김정호
    • 한국정밀공학회지
    • /
    • 제27권5호
    • /
    • pp.22-26
    • /
    • 2010
  • Recently, due to the tremendous growth of media technology, demands of the aspheric glass lens which is a high-performance and miniaturized increase gradually. Generally, the aspheric glass lens is manufactured by Glass Molding Press (GMP) method using tungsten carbide (WC) mold core. In this study, the thermal deformation which was occurred by GMP process was analyzed and applied it to compensate the aspheric glass lens. The compensated lens was satisfied that can be applied to the actual specifications.

NC 선반가공에서 자동공구보정시스템의 개발 (Development of an Automatic Tool Compensation System in NC Lathe Machine)

  • 주상윤;강병필
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.47-54
    • /
    • 1999
  • Tool wear is one of major causes occurring defectives in NC machining. In this paper we developed an automatic tool compensation system for the NC lathe machining. The system compensates machining error without any help of operators whenever the specification of a part is out of a tolerance. The configuration of the automatic compensation system consists of a NC lathe, an autoloader, a sensor, and a PLC. The system is operated as follows. A workpiece loaded by the autoloader is machining on the NC lathe. Once the workpiece is machined to be turned to a part, it is moved onto the sensor to be measured. If the sensor detects a part out of tolerance, a tool compensation is made in the NC controller. The system gives a help in increasing the productivity by reducing occurrence of defective parts as well as by eliminating time for the tool compensation. Besides the productivity increase, the system calculates cumulative usage time of the tool and notices the tool replace time to a worker by an alarm signal. A case is introduced to show that the system can be applied effectively in a shop.

  • PDF

밀링에서 기하학적 표면조도와 측정조도의 선형보정 방법에 관한 연구 (A Study on the Linear Compensation Method of Ideal Surface Roughness to Actual Roughness in Milling)

  • 서상원;김동현;김수진
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.15-20
    • /
    • 2016
  • In this study, a numeric model for the prediction of ideal surface roughness in the rounded end mill was derived from the shape of the tool and feed per tooth. The model is compared with the well-known model of a ball and flat end mill. The ideal surface roughness was matched to the actual surface roughness by the linear equation, from which the empirical constant should be gathered from the test machining systems in the industry.

공간오차 측정을 통한 6자유도 병렬기구의 보정 (Calibration of 6-DOF Parallel Mechanism Through the Measurement of Volumetric Error)

  • 오용택;아궁 샴수딘 사라기;김정현;고태조
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.48-54
    • /
    • 2012
  • This paper introduces the kinematic calibration method to improve the positioning accuracy of a parallel mechanism. Since all the actuators in the parallel mechanism are controlled simultaneously toward the target position, the volumetric errors originated from each motion element are too complicated. Therefore, the exact evaluation of the error sources of each motion element and its calibration is very important in terms of volumetric errors. In the calibration processes, the measurement of the errors between commands and trajectories is necessary in advance. To do this, a digitizer was used for the data acquisition in 3 dimensional space rather than arbitrary planar error data. After that, the optimization process that was used for reducing the motion errors were followed. Consequently, Levenberg-Marquart algorithm as well as the error data acquisition method turned out effective for the purpose of the calibration of the parallel mechanism.

고속이송계의 열변형오차 자동보정에 관한 연구 (A Study on Automatic Compensation of Thermal Deformation Error for High Speed Feeding System)

  • 고해주;정윤교
    • 한국기계가공학회지
    • /
    • 제6권4호
    • /
    • pp.57-64
    • /
    • 2007
  • In the recent years, development of machine tool with high speed feeding system have brought a rapid increase in productivity. Practically, thermal deformation problem due to high speed is, however, become a large obstacle to realize high precision machining. In this study, therefore, the construction of automatic error compensation system to control thermal deformation in high speed feeding system with real time is proposed. To attain this purpose, high speed feeding system with feeding speed 60mm/min is developed and experimental equation for relationship between thermal deformation and temperature of ball screw shaft using multiple regression analysis is established. Furthermore, in order to analyze thermal deformation error, compensation coefficient is determined and thermal deformation experiments is carried out. From obtained results, it is confirmed that automatic error compensation system constructed in this study is able to control thermal deformation error within $15{\sim}20{\mu}m$.

  • PDF

쾌속조형 제품 오차 보정에서 역설계 활용에 관한 연구 (The Study on Application of Reverse Engineering on Correction of a Product Error by Rapid Prototyping)

  • 전언찬;김수용;한민식;김태호
    • 한국기계가공학회지
    • /
    • 제6권4호
    • /
    • pp.8-14
    • /
    • 2007
  • Recently, the variation of industry has been changed faster and faster than before. It is using Rapid Prototyping Method to cope with fast change. This technology used to make a prototype, master pattern of manufactured product by vacuum casting, and so on. But this method has errors by contraction as a necessity. this error has been caused because the shape of prototype is smaller than CAD data. So we must solve the problem about precision of product. Therefore in this study, we will reduce the errors like contraction of material by manufacturing of rapid prototype product. Through these courses, we will enhance a precision of product.

  • PDF