• Title/Summary/Keyword: 보이스 코일 액츄에이터

Search Result 2, Processing Time 0.015 seconds

Duty Ratio-Displacement Model in PWM Control of Voice Coil Actuator (보이스 코일 액츄에이터의 PWM 제어에서 듀티비-변위 모델 연구)

  • Hwang, Jin-Dong;Kwak, Yong-Kil;Kim, Ju-Hyun;Kim, Sun-Ho;Ahn, Jung-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.59-66
    • /
    • 2007
  • Voice coil actuator is used linear motion system that requires precision positioning control. In order to control precision positioning of voice coil actuator, relation model between duty ratio and moving displacement of voice coil actuator is needed. This paper present a duty ratio - displacement model in PWM control of voice coil actuator. Transfer function of voice coil actuator is obtained by combining voice coil motor's equation of motion with the equation of circuit and characteristic of voice coil motor. Consider to initial condition of velocity and current, transfer function is transformed mathematical model. The induced model can predict output displacement, velocity and current according to duty ratio and amplitude. The model is verified by experimental tests such as velocity and displacement response of voice coil motor. Simulated results have tracking errors of less than 10 percent of experimental results.

  • PDF

A Study on the Performance Evaluation of a Voice Coil Actuator for Electro-Discharge Micro-Drilling Machine (보이스코일 액츄에이터로 이송되는 미세구멍 가공용 방전 가공기의 작동특성 연구)

  • Yang, Seung-Jin;Baek, Hyeong-Chang;Kim, Byeong-Hui;Jang, In-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.152-158
    • /
    • 2001
  • In this paper, we have developed an electro discharge machine for micro drilling driven by a voice coil actuator. Because the voltage signal of the electro-discharging circuit shows a lot of peaks and valleys, the active type low-pass filtering technique is adopted to get the average of the signal. Since the motion of the voice coil is precisely controlled by the error value between the object voltage value and the measured one, it is possible to prevent the mechanical contact between the rotating electrode and the workpiece and to maintain the appropriate machining conditions during the process. The electro-chemical machining technology was also adopted to make small diameter electrodes. Pure water is used as a dielectric. The machining procedure is performed to verify the feasibility of the developed system. It takes about 10 seconds to drill the ${\phi}m$100${\mu}m$ hole to the 100${\mu}m$ thickness stainless steel plate. The machining time depends on the values of the resister and the capacitor. There may exist the optimal values of time constant and the tendency is displayed In the appendix.

  • PDF