• Title/Summary/Keyword: 보온커튼

Search Result 35, Processing Time 0.025 seconds

Study on Heating Load Characteristics and Thermal Curtain Effects for Simple Silkworm Rearing Houses(I) -Heating Load Coefficient and Maximum Heating Load- (간이잠실(簡易蠶室)의 난방(暖房) 부하특성(負荷特性) 및 보온(保溫)커튼 설치효과(設置効果)에 관(關)한 연구(硏究)(I) -간이잠실(簡易蠶室)의 난방(暖房) 부하계수(負荷係數) 및 최대(最大) 난방부하(暖房負荷)-)

  • Choe, K.J.;Lee, D.H.;Park, K.K.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.4
    • /
    • pp.346-354
    • /
    • 1990
  • In order to provide basic references for the design of heating on simple silkworm rearing house, the actual change of heating load coefficient by progress of adult silkworm rearing day from the reared in silkworm rearing house, the heating load coefficient by types of silkworm rearing houses and the heating requirement and the maximum heating load by types of silkworm rearing houses were determined. The results obtained from the study were as follows : 1. The average heating load coefficients of NS, OS and CC type simple silkworm rearing houses were $24.1KJ/m^2-hr-^{\circ}C$, $19.8KJ/m^2-hr-^{\circ}C$, and $10.8KJ/m^2-hr-^{\circ}C$, respectively. 2. The change of heating load coefficient by progress of silkworm rearing day after reared into simple silkworm rearing house could be expressed as Fig. 4. 3. Heating degree-hour for adult silkworm rearing in Suweon district was calculated as $951.6^{\circ}C-hr$ for spring season and $610.5^{\circ}C-hr$ for autumn season. 4. Yearly heating requirement of the NS type was estimated twice more than that of the CC type. Thus, some kinds of reinforced thermal adiabatic facilities is desirable for NS type. 5. The time for maximum heating load was turned out at the 4th instar during the spring season and after the mounting during the autumn season. 6. This study was performed in Suweon district. However, the estimated and analyzed data could be adapted to the major silkworm rearing district if their meteorology data were adjusted.

  • PDF

Variation of the Overall Heat Transfer Coefficient of Plastic Greenhouse Covering Material (플라스틱온실 피복재의 관류열전달계수 변화)

  • Lee, Hyun-Woo;Diop, Souleymane;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.72-77
    • /
    • 2011
  • The objective of the present study is to provide the basic data necessary for estimating the overall heat transfer coefficient of commercial plastic greenhouse. The heat flow through covering of greenhouses was measured and the variation of overall heat transfer coefficient was analyzed. Because the inside-outside temperature difference of greenhouse to indicate the stabilized overall heat transfer coefficient was different depending on the number of covering layers, the actual overall heat transfer coefficient should be decided in range of inside-outside temperature difference to make the coefficient constant for each covering method. The variation trend of the overall heat transfer coefficient according to the inside-outside temperature difference corresponded with the existing research results, but the specific values of temperature difference to present the stabilized overall heat transfer coefficient were different each other. The increase rates of overall heat transfer coefficient with wind speed were quite dissimilar among several research results and the quantity of heat loss through covering according to the wind speed in the double layers covered or curtained greenhouse was less than that in the single layer covered greenhouse. Because there was large variations among the values of overall heat transfer coefficient for the polyethylene film greenhouses, it was required to establish the standardized environmental condition for experiment measuring heat flow through covering in commercial greenhouse.

Intelligent Smart Farm A Study on Productivity: Focused on Tomato farm Households (지능형 스마트 팜 활용과 생산성에 관한 연구: 토마토 농가 사례를 중심으로)

  • Lee, Jae Kyung;Seol, Byung Moon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.14 no.3
    • /
    • pp.185-199
    • /
    • 2019
  • Korea's facility horticulture has developed remarkably in a short period of time. However, in order to secure international competitiveness in response to unfavorable surrounding conditions such as high operating costs and market opening, it is necessary to diagnose the problems of facility horticulture and prepare countermeasures through analysis. The purpose of this study was to analyze the case of leading farmers by introducing information and communication technology (ICT) in hydroponic cultivation agriculture and horticulture, and to examine how agricultural technology utilizing smart farm and big data of facility horticulture contribute to farm productivity. Crop growth information gathering and analysis solutions were developed to analyze the productivity change factors calculated from hydroponics tomato farms and strawberry farms. The results of this study are as follows. The application range of the leaf temperature was verified to be variously utilized such as house ventilation in the facility, opening and closing of the insulation curtain, and determination of the initial watering point and the ending time point. Second, it is necessary to utilize water content information of crop growth. It was confirmed that the crop growth rate information can confirm whether the present state of crops is nutrition or reproduction, and can control the water content artificially according to photosynthesis ability. Third, utilize EC and pH information of crops. Depending on the crop, EC values should be different according to climatic conditions. It was confirmed that the current state of the crops can be confirmed by comparing EC and pH, which are measured from the supplied EC, pH and draining. Based on the results of this study, it can be confirmed that the productivity of smart farm can be affected by how to use the information of measurement growth.

The Effects of Renewable Energy in Agricultural Sector (농업분야 신재생에너지 보급현황 및 파급효과 분석)

  • Park, Jiyun;Kim, Yeonjoong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.224-235
    • /
    • 2019
  • The increase in the amount of energy used in the agricultural sector due to the expansion of agricultural machinery and greenhouse horticulture has caused a range of problems, such as an increase in the cost of input, such as heating costs and greenhouse gas emission. To overcome these problems, this study examined the current status of energy use in greenhouse horticulture as well as the change patterns of non-taxable oil and agricultural electricity, and reviewed the current status of the supply of renewable energy and energy saving facilities for agriculture. This study investigated the area of advanced and renewable energy and energy saving facilities implemented, applied the energy saving ratio of advanced and renewable energy and energy saving facilities, and determined the effects of renewable energy in the agricultural sector, such as increase in production, decrease in heating cost, reduction in Government financial expenditure, reduction in greenhouse gas emission, and oil substitution effect.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF