• Title/Summary/Keyword: 보안관리도 패턴

Search Result 93, Processing Time 0.018 seconds

An Approach Using LSTM Model to Forecasting Customer Congestion Based on Indoor Human Tracking (실내 사람 위치 추적 기반 LSTM 모델을 이용한 고객 혼잡 예측 연구)

  • Hee-ju Chae;Kyeong-heon Kwak;Da-yeon Lee;Eunkyung Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.43-53
    • /
    • 2023
  • In this detailed and comprehensive study, our primary focus has been placed on accurately gauging the number of visitors and their real-time locations in commercial spaces. Particularly, in a real cafe, using security cameras, we have developed a system that can offer live updates on available seating and predict future congestion levels. By employing YOLO, a real-time object detection and tracking algorithm, the number of visitors and their respective locations in real-time are also monitored. This information is then used to update a cafe's indoor map, thereby enabling users to easily identify available seating. Moreover, we developed a model that predicts the congestion of a cafe in real time. The sophisticated model, designed to learn visitor count and movement patterns over diverse time intervals, is based on Long Short Term Memory (LSTM) to address the vanishing gradient problem and Sequence-to-Sequence (Seq2Seq) for processing data with temporal relationships. This innovative system has the potential to significantly improve cafe management efficiency and customer satisfaction by delivering reliable predictions of cafe congestion to all users. Our groundbreaking research not only demonstrates the effectiveness and utility of indoor location tracking technology implemented through security cameras but also proposes potential applications in other commercial spaces.

A Bloom Filter Application of Network Processor for High-Speed Filtering Buffer-Overflow Worm (버퍼 오버플로우 웜 고속 필터링을 위한 네트워크 프로세서의 Bloom Filter 활용)

  • Kim Ik-Kyun;Oh Jin-Tae;Jang Jong-Soo;Sohn Sung-Won;Han Ki-Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.7 s.349
    • /
    • pp.93-103
    • /
    • 2006
  • Network solutions for protecting against worm attacks that complement partial end system patch deployment is a pressing problem. In the content-based worm filtering, the challenges focus on the detection accuracy and its performance enhancement problem. We present a worm filter architecture using the bloom filter for deployment at high-speed transit points on the Internet, including firewalls and gateways. Content-based packet filtering at multi-gigabit line rates, in general, is a challenging problem due to the signature explosion problem that curtails performance. We show that for worm malware, in particular, buffer overflow worms which comprise a large segment of recent outbreaks, scalable -- accurate, cut-through, and extensible -- filtering performance is feasible. We demonstrate the efficacy of the design by implementing it on an Intel IXP network processor platform with gigabit interfaces. We benchmark the worm filter network appliance on a suite of current/past worms, showing multi-gigabit line speed filtering prowess with minimal footprint on end-to-end network performance.

Reinforcement Mining Method for Anomaly Detection and Misuse Detection using Post-processing and Training Method (이상탐지(Anomaly Detection) 및 오용탐지(Misuse Detection) 분석의 정확도 향상을 위한 개선된 데이터마이닝 방법 연구)

  • Choi Yun-Jeong;Park Seung-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.238-240
    • /
    • 2006
  • 네트워크상에서 발생하는 다양한 형태의 대량의 데이터를 정확하고 효율적으로 분석하기 위해 설계되고 있는 마이닝 시스템들은 목표지향적으로 훈련데이터들을 어떻게 구축하여 다룰 것인지에 대한 문제보다는 대부분 얼마나 많은 데이터 마이닝 기법을 지원하고 이를 적용할 수 있는지 등의 기법에 초점을 두고 있다. 따라서, 점점 더 에이전트화, 분산화, 자동화 및 은닉화 되는 최근의 보안공격기법을 정확하게 탐지하기 위한 방법은 미흡한 실정이다. 본 연구에서는 유비쿼터스 환경 내에서 발생 가능한 문제 중 복잡하고 지능화된 침입패턴의 탐지를 위해 데이터 마이닝 기법과 결함허용방법을 이용하는 개선된 학습알고리즘과 후처리 방법에 의한 RTPID(Refinement Training and Post-processing for Intrusion Detection)시스템을 제안한다. 본 논문에서의 RTPID 시스템은 active learning과 post-processing을 이용하여, 네트워크 내에서 발생 가능한 침입형태들을 정확하고 효율적으로 다루어 분석하고 있다. 이는 기법에만 초점을 맞춘 기존의 데이터마이닝 분석을 개선하고 있으며, 특히 제안된 분석 프로세스를 진행하는 동안 능동학습방법의 장점을 수용하여 학습효과는 높이며 비용을 감소시킬 수 있는 자가학습방법(self learning)방법의 효과를 기대할 수 있다. 이는 관리자의 개입을 최소화하는 학습방법이면서 동시에 False Positive와 False Negative 의 오류를 매우 효율적으로 개선하는 방법으로 기대된다. 본 논문의 제안방법은 분석도구나 시스템에 의존하지 않기 때문에, 유사한 문제를 안고 있는 여러 분야의 네트웍 환경에 적용될 수 있다.더욱 높은성능을 가짐을 알 수 있다.의 각 노드의 전력이 위험할 때 에러 패킷을 발생하는 기법을 추가하였다. NS-2 시뮬레이터를 이용하여 실험을 한 결과, 제안한 기법이 AOMDV에 비해 경로 탐색 횟수가 최대 36.57% 까지 감소되었음을 알 수 있었다.의 작용보다 더 강력함을 시사하고 있다.TEX>로 최고값을 나타내었으며 그 후 감소하여 담금 10일에는 $1.61{\sim}2.34%$였다. 시험구간에는 KKR, SKR이 비교적 높은 값을 나타내었다. 무기질 함량은 발효기간이 경과할수록 증하였고 Ca는 $2.95{\sim}36.76$, Cu는 $0.01{\sim}0.14$, Fe는 $0.71{\sim}3.23$, K는 $110.89{\sim}517.33$, Mg는 $34.78{\sim}122.40$, Mn은 $0.56{\sim}5.98$, Na는 $0.19{\sim}14.36$, Zn은 $0.90{\sim}5.71ppm$을 나타내었으며, 시험구별로 보면 WNR, BNR구가 Na만 제외한 다른 무기성분 함량이 가장 높았다.O to reduce I/O cost by reusing data already present in the memory of other nodes. Finally, chunking and on-line compression mechanisms are included in both models. We demonstrate that we can obtain significantly high-performanc

  • PDF