• Title/Summary/Keyword: 보수물질

Search Result 173, Processing Time 0.024 seconds

Structural Performance and Fire Resistance Capacity of Inorganic Polymer Composites for Carbon Sheets Exposed to High Temperature (탄소섬유쉬트 보강 콘크리트용 무기계 폴리머 접착제의 내화 및 구조성능)

  • Chung, Lan;Park, Hyun-Soo
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.109-115
    • /
    • 1998
  • 철근콘크리트 구조물이 과소설계되어 있거나 과다 하중이 작용하게 되면 그 구조물의 구조성능을 파악하여 보수.보강을 시행하게 된다. 최근에 가장 맣이 사용되는 보수.보강 재료로는 특히 휨내력을 보강하는데 탄소섬유를 들 수 있다. 탄소섬유쉬트는 내열성과 내호염성에 있어서 회재가 발생할 경우 보강재료로서 충분한 성능을 가지고 있다. 그러나 이를 접착시키는데 사용되는 에폭시는 유기계 물질로서 화재시 유독가스가 발생하고 내열성능도 30$0^{\circ}C$정도에도 지탱하기 어려워 화재 발생이 가능한 구조물에 사용하기 어렵다. 이 연구에서는 무기계 폴리머 복합재료로 접착된 탄소섬유를 고온(약 800~100$0^{\circ}C$, 1시간)으로 가열한 후 가열된 섬유판의 인장, 휨 전단내력을 검토하여 내열성능을 파악하고 이 섬유쉬트로 보강한 철근콘크리트 부재의 휨 성능을 실험적으로 규명하여 화재의 위험이 있는 구조물에 구조적인 보강재료로 사용이 가능한가를 검토하였다. 연구 결과, 개발된 무기계 폴리머 복합체는 인장강도, 휨강도 및 접착강도가 유기계 접착제와 유사하게 나타났고 800~100$0^{\circ}C$ 정도로 1시간 가열한 이후에도 상온 시험체 휨내력과 전단내력의 63%, 33% 정도를 유지하여 화재의 위험이 있는 부위에도 사용이 가능한 것으로 판단되었다.

Hardening properties in MMA monomer using UP and EPS in addition hardener (경화제의 첨가에 따른 UP와 EPS 혼입 MMA 수지의 경화특성)

  • Lee, Jung-Hui;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.445-448
    • /
    • 2008
  • The unsaturated polyester(UP) and epoxy resin have a superior material properties and a chemical resistance using sewerage pipes rehabilitation. However, UP and epoxy have not a low temperatures harding, the requirement $8{\sim}11$ hours long times harding and heating system used by reinforcement liner. This study is to evaluate the effects of low temperature harding properties methyl methacrylate(MMA) monomer using expanded polystyrene(EPS) and UP in addition of initiator and promoters. From the test result, viscosity tends to increase with increasing EPS and UP contents. However, harding time change of the MMA resins which it follows in addition of the initiator and promoter.

  • PDF

Characterization of Repairing Polyurethane for Trenchless Sewer Pipeline (비굴착 하수관로용 폴리우레탄 보수재 특성 평가)

  • Park, Jun-Ha;Jeon, Sang-Ryeol;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3542-3547
    • /
    • 2015
  • There is commonly used the full depth excavation method of sewer pipeline maintenance in Korea. This induces couple of technical and social problems like increase of construction cost and time for excavation and backfill, increase of public complains and delay of traffic, and so force. In order to overcome these problems, lots of laboratory tests were carried out for sewer pipeline of maintenance materials with trenchless methods. The testing materials are liquid and hardened polyurethane, and polyurethane CIPP. The lab tests were followed by Korean Standard. There are no side effects, like harmless to the human body and air pollution with stink. Judging from the limited test results, all the items tested were satisfied the KS criteria.

Influence of Exposure Environmental Conditions on the Crack Healing Performance of Self-healing Repair Mortar Specimens (노출환경 조건이 자기치유형 보수 모르타르 시험체의 균열 치유성능에 미치는 영향)

  • Lee, Woong-Jong;Lee, Hyun-Ho;Ahn, Sang-Wook;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.283-288
    • /
    • 2018
  • Since the crack self-healing materials are activated according to the exposure environmental conditions from the time of crack occurrence, it is very important to clarify the relationship between the healing performance and the exposure environmental conditions of the crack surface. In this paper, the influence of the exposure environmental conditions on the crack healing performance of self-healing repair mortar was investigated through the water permeability test. The influence of temperature and humidity on the crack width of cracked specimens was evaluated. As a result of measuring the change of the crack width, the effect of curing temperature was negligible but it was confirmed that crack-closing occurred due to the change of dry-wet condition. The healing materials produced on the crack surface of the specimens was identified as calcite minerals. Since the minerals with high density are precipitated under the influence of gravity, the healing performance is somewhat different according to the direction of the crack surface, and the healing performance was significantly improved in the wet exposure condition than the air exposure condition.

Development of Underwater Adhesive, Epoxy, and FRP Composite for Repair and Strengthening of Underwater Structure (수중 구조물의 보수·보강을 위한 수중 접착제, 에폭시와 섬유복합재의 개발)

  • Kim, Sung-Bae;Yi, Na-Hyun;Nam, Jin-Won;Byun, Keun-Joo;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.149-158
    • /
    • 2010
  • Recently, numerous construction techniques for repairing and strengthening methods for above ground or air exposed concrete structure have been developed. However repairing and strengthening methods for underwater structural members under continuous loading, such as piers and steel piles need the further development. Therefore, this study develops an aqua epoxy, which can be used for repairing and strengthening of structural members located underwater. Moreover, using the epoxy material and strengthening fibers, a fiber reinforced composite sheet called Aqua Advanced FRP (AAF) for underwater usage is developed. To verify and to obtain properties of the material and the performance of AAF, several tests such as pull-off strength test, bond shear strength test, and chemical resistance test, were carried out. The results showed that the developed aqua epoxy does not easily dissolve in wet conditions and does not create any residual particle during hardening. In spite of underwater conditions, it showed the superior workability, because of the high viscosity over 30,000 cps and adhesion capacity over 2 MPa, which are nearly equivalent to those used in dry conditions. In case of the chemical resistance test, the developed aqua epoxy and composite showed the weight change of about 0.5~1.0%, which verifies the superior chemical resistance.

Interpretation of Surface Contamination and Genesis on the Stupa of the State Preceptor Jigwang from the Beopcheonsaji Temple Site in Wonju, Korea (원주 법천사지 지광국사탑의 표면오염 및 성인 해석)

  • Kang, San Ha;Lee, Ju Mok;Lee, Gyu Hye;Kim, Sa Duk;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.34 no.3
    • /
    • pp.211-225
    • /
    • 2018
  • The Stupa of the State Preceptor Jigwang from the Beopcheonsaji temple site in Wonju (National Treasure No. 101) was built in the Goryeo Period (around the 11th century), with very excellent style and techniques. It was returned to the Korea after being taken to Osaka of Japan without notice in 1912, and was severely damaged during the Korean War. Subsequently, the Stupa was restored using restoration materials like mortar, and relocated to the National Palace Museum of Korea. Surface contaminants in the Stupa primarily existed around the restoration materials. Black discoloration, which indicates a high discoloration grade, signified a high possession rate in the north and inner regions of the Stupa, which may be related to the relative moisture maintenance time. Most surface contaminants were calcite and gypsum; the black discoloration area underwent secondary discoloration due to air pollution. Moreover, the stone properties exhibited a relatively low discoloration grade, exhibiting crystallized contaminants that partly covered the rock-forming minerals. Overall, the Stupa deteriorated due to discoloration and being covered by lime materials, which were dissolved as the mortar degraded. Hence, it required contaminants removal, surface cleaning and desalination during conservation treatment, in order to control the rate of physicochemical deterioration by contaminants.

Effect of Dietary Clay Mineral on Meat Quality of Hanwoo (Korean Cattle) Bull Beef during Refrigerated Storage (점토 광물질의 급여가 비거세 우육의 저온저장 중 품질에 미치는 영향)

  • Lee Sung Ki;Kim Yong Sun;Liang Cheng Yun;Ju Myung Kyu;Park Yeon Soo
    • Food Science of Animal Resources
    • /
    • v.24 no.3
    • /
    • pp.253-259
    • /
    • 2004
  • The effect of dietary clay mineral on meat quality in M. longissimus of Hanwoo (Korean cattle) bull beef during refrigerated storage (4$^{\circ}C$) was investigated. Experimental groups were divided into control (basal diet) and CT-1.25% (basal diet + 1.25% clay mineral) groups. There was no significant differences in proximate and fatty acid compositions between control and CT-1.25% groups. The pH of control group was significantly (p<0.05) changed during storage, but CT-1.25% group was little affected by storage time. CIE a* (redness), chroma (C*) values and R630-R580 were significantly (p<0.05) decreased during storage for both groups. In particular, those values decreased more rapidly in the control group. The rate of metmyoglobin accumulation during storage increased more rapidly in the control group. Therefore, discoloration in the control group was more accelerated compared to the CT-1.25% group. TBARS (thiobarbituric acid reactive substances) which represents lipid rancidity were significantly (p<0.05) lower in CT-l.25% group than in the control. Water-holding capacity (WHC) was significantly (p<0.05) increased during storage for both groups, and CT-1.25% group had significantly (p<0.05) higher WHC than control group. Consequently, feeding of clay mineral (1.25%) was effective in increasing meat color stability and WHC, and retarding lipid oxidation than did control group.

A Study on Need for Safe Baseline Isolation Standard for Chemical Plant Equipment (화학공장 설비의 안전한 격리 표준 필요성에 대한 연구)

  • Su-Ji Choi;Sang-Gil Kim;Gyu-Sun Cho
    • Industry Promotion Research
    • /
    • v.8 no.4
    • /
    • pp.37-46
    • /
    • 2023
  • Due to the aging, advancement, and complexity of chemical facilities, non-routine work such as facility inspection, repair, or maintenance work is increasing. Of the 1,483 accidents that occurred over the past 10 years at chemical product manufacturing sites subject to PSM, accidents that occurred during non-routine work accounted for 56% (932 Cases) of the total. It can be seen that more accidents occur during non-routine work than during routine work. In particular, in order to improve the economy and efficiency of factory operation, there are cases where some facilities are stopped without stopping the entire factory and then inspection, repair, or maintenance work is performed while isolated from the operating facilities. Therefore, first, a safe isolation method must be selected by establishing an isolation standard (Baseline Isolation Standard) based on the chemicals handled, operating conditions, and risk level of the equipment in the chemical plant. Second, since current domestic laws and standards do not suggest the need for specific quarantine standards, it is necessary to institutionalize the preparation of quarantine standards. Technical and institutional improvements are needed to prevent fires, explosions, and poisoning accidents caused by leaks of chemical substances.

Practical Radiation Safety Control: (II) Application of Numerical Guidance for the Discharges of Radioactive Gaseous and Liquid Effluents (방사선안전관리 실무: (II) 배기중 및 배수중 배출관리기준의 적용)

  • Kim, Hyun Kee
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.61-64
    • /
    • 2014
  • Radioactive materials are in use and have many applications from the generation of electricity to the purposes of research, industry and medicine such as diagnosis and therapy. In the course of their use some of radioactive substances may be discharged into the environment from facilities using the unsealed radioactive materials, which are main artificial sources occurring the public exposure. Discharges are in the form of gases, particles or liquids. This paper provides procedures to estimate the level of the public exposure based on the conservative assumptions and simple calculations in the facility using unsealed liquid sources. They consist of two processes; (1) to calculate maximum concentration of gaseous effluents discharged through the exhaust pipe and average concentration of liquid effluents discharged through the drain of the storage tank, (2) to compare each of them to numerical guidances for the discharges of radioactive gaseous and liquid effluents mentioned in the related notification. For this purpose followings are assumed properly; daily usage, form and dispersion rate of radionuclides, daily amount of radioactive liquid waste and exhaust and drainage equipment. The procedures are readily applicable to evaluate environmental effects by planned effluent discharges from facilities using the unsealed radioactive materials. In addition they may be utilized to obtain practical requirements for radiation safety control necessary for the reductions of the public exposure.

Characteristics of HFIX Insulated Wire Sheaths Contaminated by Pollutants (오염물질에 따른 HFIX 절연전선 피복의 특성 변화에 관한 연구)

  • Choi, Su-Gil;Nam, Yeong-Jae;Jin, Se-Young;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.8-17
    • /
    • 2020
  • In this study, the characteristics of HFIX insulated wire sheaths contaminated by pollutants were examined. KS C IEC 60811-1-3 standard was followed in performing the water-resistance wire tests. Pollutants were selected, and the specimens were exposed to the pollutants for a maximum duration of four weeks. The maximum tensile load and the elongation rate were measured each week. As the period of pollution exposure increased, the maximum tensile load of the specimens decreased by 6.22% and 6.52% at room temperature and high temperature, respectively, and 19.94% for specimens coated with a rust-proof lubricant. The elongation rate also decreased rapidly, such that the reductions in the properties of the sheath were significant. From the analysis of the surfaces using a scanning microscope, as the contamination period increased, structural changes such as perforation, split, and melting occurred, and the mechanical properties of the specimens decreased. Therefore, it is necessary to develop and follow an inspection cycle and periodically carry out repairs to prevent the deterioration of insulated wires.