• Title/Summary/Keyword: 보론강

Search Result 51, Processing Time 0.029 seconds

Try out and Analytical Researches on Quenching Process of Coupled Torsion Beam Axle using Boron Steel Tube (보론강을 이용한 CTBA의 후열처리 공정 실험 및 해석)

  • Yoon, S.J.;Park, J.K.;Kim, Y.S.;Suh, C.H.;Lee, K.H.;Kim, R.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.181-184
    • /
    • 2009
  • The hot press farming process, which is the press hardening of steel parts using cold dies, can utilize both ease of shaping and high strength due to the hardening effect of rapid quenching during the pressing. In this study, a thermo-elastoplastic analysis of the hot press forming process using the finite element method was performed in order to investigate the deformation behavior and temperature history during the process and the mechanical properties of the pressed parts.

  • PDF

Design of cooling channel in hot press forming process of Boron Steel (보론강 고온 성형 공정의 냉각 채널 설계)

  • Hong, S.M.;Ryu, S.Y.;Park, J.K.;Yoon, S.J.;Kim, K.J.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.367-370
    • /
    • 2009
  • Recently, ultra high strength products can be manufactured by the hot press forming process of Boron steel in automotive and electronics industries. In order to get high strength, the hot press forming should be accompanied by quenching process inducing phase transformation. In the study, the heat conductive die and the cooling channel were designed by the numerical simulation and the effect of three different parameters were determined to improve cooling characteristics.

  • PDF

Mechanical and microstructural characteristics of a high-strength boron-alloyed steel for hot press forming (고온성형 위한 고강도보론강의 기계적 특성 및 마이크로구조 연구)

  • Lee, Jong-Shin;Chae, Myoung-Su;Park, Chun-Dal;Kim, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1355-1360
    • /
    • 2007
  • The use of high strength steels are gradually increasing to reduce the weight of automobile to improve the environmental problems and collision safety. To encounter the traditional disadvantages of high strength steels like as a poor formability and high springback, hot press forming has been developed. By this method, the strength of steel sheet is increased about three times of original one through die quenching process. In order to the design of hot press forming tools by using numerical simulation, the knowledge of mechanical and microstructural characteristics are required. This study show the mechanical and microstructural characteristics of a high strength boron-alloyed steel according to the various quenching conditions.

  • PDF

Thermo-mechanical Simulation of Boron Steel Cylinders during Heating and Rapid Cooling (원통형 보론강을 사용한 가열-급냉공정에서의 열변형 해석)

  • Suh, C.H.;Kwon, T.H.;Kang, K.P.;Choi, H.Y.;Kim, Y.S.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.475-481
    • /
    • 2014
  • Water quenching is one method of cooling after hot forming, which is presently being used for the manufacturing of automobile parts. The formed parts at room temperature are heated and then cooled rapidly in a water bath to produce high strength. The formed parts may undergo excessive thermal distortion during the water quench. In order to predict the distortion during water quenching, a coupled thermo-mechanical simulation is needed. In the current study, the simulation of heating and cooling of boron steel cylinders was performed. The material properties for the simulation were calculated from JMatPro, and the convective heat transfer coefficient was obtained from experimental tests. The results show that the thermal distortion and the residual stresses are well predicted by the coupled simulation.

Development of Vehicle Door Impact Beam by Hot Stamping (핫스탬핑에 의한 자동차 도어 임팩트빔의 개발)

  • Yum, Young-Jin;Kim, Jong-Gook;Lee, Hyun-Woo;Hwang, Jung-Bok;Kim, Sun-Ung;Kim, Won-Hyuck;Yoo, Seung-Jo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.7-12
    • /
    • 2008
  • A hot stamping technology of vehicle door impact beam made of thin sheet steel has been developed, with the aim of ensuring occupant safety in a side collision. This technology has been implemented to increase the strength of vehicle body parts and to reduce not only the weight of door impact beam but also the number of work processes. Mechanical tests were performed to obtain material properties of hot-stamped specimen and those were used as input data in stamping and structural simulation for optimal design of door impact beam. Strength of hot-stamped door impact beam increased to the value 102% higher than that of conventional pipe-shaped door impact beam and structural simulation showed that hot-stamped door impact beam achieved 28% weight reduction.

  • PDF

Formability Evaluation of Tailor Welded Blanks of Boron Steel Sheets by Erichsen Cupping Test at Elevated Temperature (보론강 용접 맞춤 판재의 고온 에릭슨 커핑 평가)

  • Kim, Y.I.;Kim, J.H.;Kim, Y.;Lee, M.Y.;Moon, Y.H.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.568-574
    • /
    • 2011
  • The combination of tailor welded blank (TWB) and hot stamping often offers improved crash-worthiness and reduced mass of stamped parts in the automobile body. To investigate the formability of laser TWB and the reliability of weld line, the present study used 22MnB5 boron steel sheet of the same thickness and used the Erichsen cupping test at elevated temperatures. The effects of laser direction, die temperature, weld line positions and forming speed on formability(the limiting dome height) were studied and the results were compared with the formability of the base material.

Effect of Calcium and Boron Intakes on Calcium Balance Status in Ovariectomized Rats (난소절제 흰쥐에 있어 칼슘과 보론 섭취수준이 칼슘 평형상태에 미치는 영향)

  • Choi, Mi-Kyeong;Kim, Mi-Hyun;Kang, Myung-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.1
    • /
    • pp.48-54
    • /
    • 2006
  • This study was conducted to investigate the effect of calcium and boron intakes on calcium utilization in ovariectomized (OVX) rats. Rats were divided into 9 groups and fed diets containing various levels of calcium $(0.1\%,\;0.5\%,\;1.5\%)$ and boron (0.5 ppm, 50 ppm, 100 ppm) for 4 weeks. The half of rats in each group were ovariectomized and the others were sham-operated. Rats were fed same diets for 8 weeks after operation. Feed intake and weight gain were significantly increased as the dietary calcium was increased and those of OVX group were higher than in sham-operated group. Feed efficiency ratio was significantly higher in OVX group than that in sham-operated one. With boron supplementation, serum calcium level was significantly increased in low-calcium group, but decreased in adequate/high-calcium group. In calcium balance, calcium intake was significantly increased with increasing levels of calcium and boron and higher in OVX group than that in sham-operated one. With increasing calcium intake, fecal and urinary calcium excretions were significantly increased. Urinary calcium excretion was significantly decreased with increment of boron intake. Apparent calcium absorption of adequate-calcium OVX group was the highest among the groups. Daily calcium retention was significantly increased as the dietary calcium was increased and that of high-calcium OVX group was higher than high-calcium sham-operated group. According to these results, the boron supplementation increased the calcium intake and decreased the urinary calcium excretion. Therefore, it could be suggested that the boron supplementation may be complementary to calcium nutrition and useful for bone health.

Study on Fatigue Characteristic of Suspension Part Using Hot Forming (열간성형공법으로 제작된 현가부품의 피로특성 연구)

  • Suh, Chang Hee;Park, Myung Kyu;Park, Jong Kyu;Kim, Young Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.339-344
    • /
    • 2013
  • Hot forming using boron steel is currently used for manufacturing low-weight automobile body parts, and a high tensile strength of about 1,500 MPa is obtained after hot forming. However, a high fatigue life is a more important factor than high strength when it is used for automobile suspension parts. A tubular torsion beam axle (TTBA) is one of these suspension parts, and this research deals with the fatigue characteristic of TTBA using hot forming. The low cyclic fatigue life of boron steel is investigated according to the cooling method. In addition, a structural and fatigue analysis of TTBA is performed to predict the fatigue life. The stress concentration that occurs in the tubular torsion beam is found, and the longest fatigue life occurs when rapid cooling is utilized in the TTBA fabrication.

Effect of carbon and boron addition on sintering behavior and mechanical properties of hot-pressed SiC (카본 및 보론 첨가가 탄화규소 열간 가압 소결거동 및 기계적 특성에 미치는 영향)

  • Ahn, Jong-Pil;Chae, Jae-Hong;Kim, Kyoung-Hun;Park, Joo-Seok;Kim, Dae-Gean;Kim, Hyoung-Sun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • SiC has an excellent resistance to oxidation and corrosion, high temperature strength and good thermal conductivity. However, it is difficult to density because of its highly covalent bonding characteristics. Hot-press sintering process was applied to fabricate fully densified SiC ceramics with carbon and boron addition as a sintering additive. The addition of carbon improved the mechanical properties of SiC because it could induce a fine and homogeneous microstructure by the suppression of abnormal growth of SiC grain. Also, the addition of carbon could control the phase transformation of SiC. The phase transformation of 6H to 4H increased with sintering temperature but the addition of carbon decreased that kind of phase transformation.

3-D Atom Probe Tomography and Secondary ion Mass Spectroscopy techniques for the microstructure and atomic scale investigation on the state of Boron in Steels (3차원 원자 침 분석기 (3-DAPT)와 이차이온 질량분석기 (SIMS)을 이용한 보론 첨가 강의 미세구조와 보론의 원자 단위 분석)

  • Seol, J.B.;Kang, J.S.;Yang, Y.S.;Park, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.91-94
    • /
    • 2008
  • Newly developed Atom Probe Tomography (APT) technique can provide the highest available spatial resolution, 3D tomography imaging and quantitative chemical analysis in a sub-nm scale. As a complementary technique to APT, Nano-secondary ion Mass Spectroscopy (SIMS) also provides the boron distribution in micro-scale. Therefore, the exact behavior of boron at either grain boundary or grain interior in steels can be investigated by the combination of APT and SIMS techniques from the sub-nanometer scale to the micrometer scale. The results obtained by both APT and SIMS revealed that the boron atoms were mainly segregated to the grain boundaries rather than to the grain interior in the steels containing 50ppm and 100ppm boron. It also found that carbon atoms were segregated at the boron enriched regions, which were thought to be retained austenite phase due to the chemical composition of carbon atoms.

  • PDF