• Title/Summary/Keyword: 보강 시스템

Search Result 772, Processing Time 0.02 seconds

전문성을 심화하는 기술혁신시스템

  • 노환진
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2003.05a
    • /
    • pp.287-302
    • /
    • 2003
  • 우리나라의 산·학·연 기술혁신시스템을 점검하고 문제에 대한 대책을 제시하였다. 대학의 문제점으로는 교수인력의 유동성부족과 비경쟁체제를 지적하였다. 출연연은 기능을 공공문제해결로 전환해야 하며, 연구원신분의 안정을 지적하였다. 산업계의 R&D 능력의 제고를 위하여, 정부의 유인책을 제시하였다. 그리고 과학기술 담당부처에서는 국가연구개발사업을 공공부문으로 전환할 것을 제안하며, 종합조정의 범위확대, 평가시스템의 투명화, 연구관리의 전문성 보강, 기술분류를 통한 연구관리 그리고 과학산업의 육성을 제안하였다. 이러한 일들이 제대로 수행되려면 공무원의 전문성이 보강되어야 함을 주장하며, 산·학·연 및 공무원의 전문성제고가 우리 경쟁력제고의 가장 중요한 방향이라고 제기하였다.

  • PDF

The Structural Performance Evaluation of Steel Pipe Pile Cap with Perfobond Rib Shear Connector (유공강판 전단연결재로 보강된 강관말뚝머리의 구조 성능 평가)

  • Koo, Hyun-Bon;Kim, Young-Ho;Kang, Jae-Yoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.843-851
    • /
    • 2008
  • The conventional pile cap reinforcement systems regulated in the design specifications have some restrictions in design and construction such as requirement of shear key, disposition of reinforcing bars and insurance of anchoring length of reinforcements. This study suggests a new type of steel pipe pile cap system with perforated flat bar shear connector as an alternative to the conventional pile cap system for the improvement in structural performance and simplification of construction. And, experimental results of push-out and bending behavior are scribed for the evaluation of structural performance of the new pile cap system and it was compared to the structural behavior of conventional pile cap system.

Development of a Computer Program to Analyze Stability of Slopes Reinforced by the Earth Retention System (활동억지시스템으로 보강된 사면의 안정해석 프로그램 개발)

  • Hong Won-Pyo;Song Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.45-58
    • /
    • 2006
  • A new computer program SLOPILE(Ver 3.0) is developed to analyze stability of slopes containing an earth retention system composing of piles, nails and anchors. SLOPILE(Ver 3.0) can calculate the slope stability for both planar failure surfaces in infinite slopes and arc failure surfaces. In order to investigate a design adaptability of SLOPILE(Ver 3.0), analysis results of TALREN and SLOPE/W programs are compared with that of SLOPILE(Ver 3.0). SLOPILE(Ver 3.0) can calculate the slopes reinforced by earth retention system such as piles, nails and anchors. But, TALREN and SLOPE/W can not calculate the slope reinforced by piles. As a analysis result of the example case, SLOPILE(Ver 3.0) is accuracy and suitable program for the stability analysis of slopes reinforced by earth retention system. Therefore, SLOPILE(Ver 3.0) is the most suitable program to analyze the slope reinforced by the earth retention system.

An Analytical Study on Hysteresis Behavior of End-reinforced Steel-beam system(Eco-girder) (단부 보강한 합성보(Eco-girder)의 이력거동에 대한 수치해석적 연구)

  • Chae, Heung-Suk;Ryoo, Jae-Yong;Chung, Kyung-Soo;Moon, Young-Min;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.543-551
    • /
    • 2010
  • The end-reinforced composite-beam (eco-girder) system was developed that has characteristics of the existing composite beams such as reduced floor height and increased strength. With it, less use of steel is expected. In the eco-girder system, only both ends of the steel-frame beam, which are vulnerable to the ultimate moment, are reinforced with steel plates so that the steel frame beam design will be based on the moment at the beam center. This study used fiber element analysis, which is a simple representation and numerical integration of the principles of the detailed Finite Element Method(FEM), to predict the hysteretic behavior of reinforced composite beams under cyclic loading. The validity of the numerical method was verified by comparing the results of this study with those of previous studies. In addition, the hysteretic behavior of the eco-girder was compared with that of the existing composite beams.

Evaluation of Seismic Response of Masonry Walls Strengthened with Steel-bar Truss Systems by Non-linear Finite Element Analysis (비선형 유한요소 해석에 의한 강봉 트러스 시스템으로 보강된 조적벽체의 내진거동 평가)

  • Hwang, Seung-Hyeon;Yang, Keun-Hyeok;Kim, Sang-Hee;Lim, Jin-Sun;Im, Chae-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.20-27
    • /
    • 2021
  • The present study presents a nonlinear finite element analysis (FEA) approach using the general program of Abaqus to evaluate the seismic response of unreinforced masonry walls strengthened with the steel bar truss system developed in the previous investigation. For finite element models of masonry walls, the concrete damaged plasticity (CDP) and meso-scale methods were considered on the basis of the stress-strain relationships under compression and tension and shear friction-slip relationship of masonry prisms proposed by Yang et al. in order to formulate the interface characteristics between brick elements and mortars. The predictions obtained from the FEA approach were compared with test results under different design parameters; as a result, a good agreement could be observed with respect to the crack propagation, failure mode, rocking strength, peak strength, and lateral load-displacement relationship of masonry walls. Thus, it can be stated that the proposed FEA approach shows a good potential for designing the seismic strengthening of masonry walls.

Load-Carrying Capacity Evaluation of the Composite Beam Strengthened by Multi-Stepwise Thermal Prestressing Method Using Cover-Plate (커버플레이트를 이용한 다단계 온도프리스트레싱으로 보강된 합성보의 하중-저항성능 분석)

  • Ahn, Jin-Hee;Jung, Chi-young;Choi, Kyu-Tae;Kim, Sang-Hyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.4 s.56
    • /
    • pp.159-169
    • /
    • 2009
  • In this study, static loading tests and numerical analyses of the composite beam strengthened by multi-stepwise thermal prestressing method were carried out to evaluate the prestressing effect of the thermal prestressing prestress and the sectional effect of the installed cover-plate on the increase in the load-carrying capacity of composit beam. From this study, the strengthening method using multi-stepwise thermal prestressing method (TPSM) can be applied to reduce the deflection of the composite beam as well as to strengthening the composite beam by inducing the prestress in case of the occurrence in the large deflection by the insufficiency of the section properties of the composite beam. because of the expectation of the increase in the yield load and the sectional properties of the composite beam.

Seismic Capacity Evaluation of Existing R/C Buildings Retrofitted by Internal Composite Seismic Strengthening Method Based on Pseudo-dynamic Testing (유사동적실험기반 내부접합형 합성내진보강공법을 적용한 기존 R/C 건물의 내진성능평가 )

  • Eun-Kyung Lee;Jin-Young Kim;Ho-Jin Baek;Kang-Seok Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.67-76
    • /
    • 2023
  • In this study, in order to enhance the joint capacity between the existing reinforced concrete (R/C) frame and the reinforcement member, we proposed a novel concept of Internal Composite Seismic Strengthening Method (CSSM) for seismic retrofit of existing domestic medium-to-low-rise R/C buildings. The Internal CSSM rehabilitation system is a type of strength-enhancing reinforcement systems, to easily increase the ultimate horizontal shear capacity of R/C structures without seismic details in Korea, which show shear collapse mechanism. Two test specimens of full-size two-story R/C frame were fabricated based on an existing domestic R/C building without seismic details, and then retrofitted by using the proposed CSSM seismic system; therefore, one control test specimen and one test specimen reinforced with the CSSM system were used. Pseudo-dynamic testing was carried out to evaluate seismic strengthening effects, and the seismic response characteristics of the proposed system, in terms of the maximum shear force, response story drift, and seismic damage degree compared with the control specimen (R/C bare frame). Experiment results indicated that the proposed CSSM reinforcement system, internally installed to the existing R/C frame, effectively enhanced the horizontal shear force, resulting in reduced story drift of R/C buildings even under a massive earthquake.

Structural Performance Evaluation of Reinforced Concrete Column Reinforced with Aramid Fibers and PET Fibers (아리미드섬유와 PET섬유시트로 보강한 철근콘크리트 기둥의 구조성능평가)

  • Dong-Hwan Kim;Min-Su Jo;Jin-Hyeung Choi;Woo-Rae Cho;Kil-Hee Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.78-85
    • /
    • 2023
  • This study evaluates the performance of reinforced concrete columns using hybrid fiber sheets for structural behavior. The purpose of this method is to improve the load-bearing capacity of the reinforced structure by impregnating a hybrid fiber sheet, which is woven by arranging aramid and glass fibers uniaxially and attached to an aged concrete structure requiring reinforcement with epoxy. In particular, not only the weight reduction of the material obtained by using a fiber lighter than the steel material, but also the low-strength, high-toughness fiber element among the fibers used delays the brittle fracture of the high-strength, low-toughness fiber element. The low-strength, high-toughness fiber element among the fibers used delays the brittle fracture of the high-strength, low-toughness fiber element, resulting in weight reduction compared to steel. The study conducted structural tests on four specimens, with the hybrid reinforcement method and failure mode as main variables. Specimen size and loading conditions were chosen to be comparable with previous studies. The structural performance of the specimen was evaluated using energy dissipation capacity and ductility. Analysis shows that excellent results can be obtained with the hybrid fiber sheet reinforcement.

A Case Study on Seismic Response of Haunch Repaired Steel MRFs (헌치로 보강된 철골모멘트골조의 지진응답 사례연구)

  • 이철호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.69-78
    • /
    • 1997
  • Recent test results of steel moment connections repaired with a haunch on the bottom side of the beam have been shown to be a very promising solution to enhancing the seismic performance of steel moment-resisting frames. Yet, litle is known about the effects of using such a repair scheme on the system seismic performance of structures. To investigate the effects of haunch repair on the system seismic performance, a case study was conducted for a 13-story steel frame building damaged during the 1994 Northridge earthquake. When haunches are incorporated in a steel moment frame, the response prediction is complicated by the presence of "dual" panel zones in the column. A new analytical modeling technique for the dual panel zone recently developed by the author was incorporated in the analysis. Incorporating the behavior of dual panel zone was among the most significant consideration in the analyses. Both the inelastic static and dynamic analyses did not indicate detrimental side effects resulting from the repair.he repair.

  • PDF

Structural Restoration for the Electric Power Transmission Tower Damaged by Foundation Settlements (기초침하에 의해 손상된 송전철탑 구조물의 구조성능개선)

  • Lee, Ho Beom;Park, Jong Kwon;Kim, Il Soo;Jang, Il Young;Song, Jae Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.83-93
    • /
    • 2013
  • Generally the capacities of electric power transmission tower's members are improved by increasing their stiffness nature through injection of grout or attachment of other structural stiffeners. Those are for upgrading their axial strength by fulfillment of proper materials into pipe members, increment of member dimension by addition of section, or a combination of the two. However the use of innovative and unusual procedures would be positively recommended for getting more stable state. It is that buckled members are replaced with lengthened and strengthened members. In providing the structural restoration procedures for the existing electric power transform tower whose main members have been damaged due to unequal foundation settlement, structural damage inspection works and numerical analyses for the damaged one and the restored one were done in detail at first. secondarily member-exchanging works using a newly-generated jacking system and strengthened members were achieved. This figures are to point clearly to inherent advantages attending the management of the towers.