• Title/Summary/Keyword: 보강형

Search Result 990, Processing Time 0.031 seconds

Improvement and Evaluation of Seismic Performance for Reinforced Concrete Beam-Column Joints Using High Performance Embedded FRP (고성능 FRP를 활용한 철근콘크리트 보-기둥 접합부의 내진 성능 평가 및 개선)

  • Ha, Gee-Joo;Shin, Jong-Hack;Kang, Hyun-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.385-392
    • /
    • 2011
  • In this study, experimental research was carried out to evaluate and improve the seismic performance of reinforced concrete beam-column joint regions using strengthening materials (steel plate, carbon fiber sheet, and embedded carbon fiber rod) in existing reinforced concrete buildings. Six specimens of retrofitted beam-column joints are constructed using various retrofitting materials and tested for their retrofit performances. Specimens designed by retrofitting the beam-column joint regions (LBCJ series) of existing reinforced concrete building showed a stable mode of failure and an increase in load-carrying capacity due to the effect of crack control at the time of initial loading and confinement from retrofitting materials during testing. Specimens of LBCJ series, designed by the retrofitting of FRP in reinforecd beam-column joint regions increased its maximum load carrying capacity by 26~50% and its energy dissipation capacity by 13.0~14.4% when compared to standard specimen of LBCJC with a displacement ductility of 4.

Application and its Reinforcing Effect of Soil Nailed-drilled Shafts (쏘일 네일(soil nail)로 보강된 현장타설말뚝의 적용성 및 보강효과 분석)

  • 김병철;이대수;김대홍;정상섬;김대학
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.87-98
    • /
    • 2004
  • In this study reinforcing effect of soil nailed-drilled shafts subjected to axial and lateral loads was evaluated. Special attention was given to the reinforcing effects of soil nails placed from the drilled shafts to surrounding weathered- and soft-rocks based on model tests, numerical analyses and field tests. The model tests and numerical analyses are conducted to analyze the reinforcing effect of various conditions of number, inclination, position and length. The results of 1/40 scale model tests and numerical analyses show that as the number of reinforcing level increases, the incremental effect of reinforcement tends to increase, whereas the reinforcing effect on relative position is negligible. In addition there is a reinforcing effect as the inclination angle increase up to 30 degrees. Based on the results of tensile load tests, soil nailed-drilled shaft has a considerably smaller settlement to reach the ultimate level compared with the result of un-reinforced drilled shafts. For compression tests, there is a reinforcing effect of about 200% measured.

Effect of Strength Increasing Sizes on the Quality of Fiberboard (섬유판(纖維板)의 증강(增强)사이즈제(齊)가 재질(材質)에 미치는 영향(影響))

  • Shin, Dong So;Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.30 no.1
    • /
    • pp.19-29
    • /
    • 1976
  • The fiberboard and paper mills in this country are much affected by the price hikes and shortage of phenolic resins, since phenolic acid as a raw material depends on imported good. It is prerequisite to fiberboard industry to help replace with other sized and stabilize the prices and supply of them, improving the quality of boards. Thus, the present study was carried out to examine the effect of strength increasing sized such as urea formaldehyde resin (anion and cation type) and urea melamine copolymer resin, on the quality of the wet forming hardboard, and comparing them with two types of proprietary modified melamine resins, and ordinary size, phenol resin. The Asplund pulp was prepared from wood wastes mixed with 20 percent of lauan and 80 percent of pines as a fibrous material. After sizing agents were added at a pH of 4.5 for 10 minutes with alum in the beater, the stock was made in the form of wet sheet, prepared, and then performed by hot pressing cycle: $180^{\circ}C$, $50-6-5kg/cm^2$, 1-2-7 minutes. The properties of hardboard were examined after air conditioning. The results obtained are summarized as follows: 1. There is a significant difference in specific gravity among hardboards that were treated with strength increasing resins, but no difference is effected by the increase in the resin content. In the case of modified melamine resin, its specific gravity is highest. The middle group comprises cation type of urea resin, anion type of urea resin, and acid colloid of urea-melamine copolymer resin. The lowest is phenolic resin. 2. The difference of the moisture content of hardboard both by the resins and by the amount of each resin applied is significant. The moisture content of hardboard becomes lower along with the increase of each resin content, but there is no difference between 2 and 3 percent. 3. For water absorption, there is a significant difference both in the adhesives used and in the amount of paraffin wax emulsion. The water resistance becomes higher inn proportion to the content of the paraffin wax emulsion. To satisfy KS F standards of the water resistance, a proprietary modified melamine resin (p-6100) and modified cation type of urea resin (p-1500) do not require any paraffin wax emulsion, but in the case of anion type of urea resin, cation type of urea resin, and urea-melamine copolymer resin, 1 percent of paraffin wax emulsion is needed, and 2 percent of paraffin wax emulsion in the case of phenolic resin. 4. The difference of flexural strength of hardboard both by the resins and by the amount of each resin is significant. Modified melamine resin shows the highest degree of flexural strength. Among the middle group are urea-melamine copolymer resin, p-1500, anion type of urea resin, and cation type of urea resin. Phenolic resin is the lowest. The cause may be attributable to factors combined with the pressing temperature, sizing effect, and thermal efficiency of press platens heated electrically. 5. Considering the economic advantages and properties of hardboard, it is proposed that urea-melamine copolymer resin and cation type of urea resin be used for the development of the fiberboard industry. It is desirable to further develop the modified urea-melamine copolymer resin and cation type of urea resin through continuous study.

  • PDF

Experimental Study on GFRP Reinforcing Bars with Hollow Section (중공형 GFRP 보강근의 인장성능 실험연구)

  • You, Young-Jun;Park, Ki-Tae;Seo, Dong-Woo;Hwang, Ji-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • Fiber-reinforced polymer (FRP) has been generally accepted by civil engineers as an alternative for steel reinforcing bars (rebar) due to its advantageous specific tensile strength and non-corrosiveness. Even though some glass fiber reinforced polymer (GFRP) rebars are available on a market, GFRP is still somewhat uncompetitive over steel rebar due to their high cost and relatively low elastic modulus, and brittle failure characteristic. If the price of component materials of GFRP rebar is not reduced, it would be another solution to increase the performance of each material to the highest degree. The tensile strength generally decreases with increasing diameter of FRP rebar. One of the reasons is that only fibers except for fibers in center resist the external force due to the lack of force transfer and the deformation of only outer fibers by gripping system. Eliminating fibers in the center, which do not play an aimed role fully, are helpful to reduce the price and finally FRP rebar would be optimized over the price. In this study, the effect of the hollow section in a cross-section of a GFRP rebar was investigated. A GFRP rebar with 19 mm diameter was selected and an analysis was performed for the tensile test results. Parameter was the ratio of hollow section over solid cross-section. Four kinds of hollow sections were planned. A total of 27 specimens, six specimens for each hollow section and three specimens with a solid cross-section were manufactured and tested. The change by the ratio of hollow section over solid cross-section was analyzed and an optimized cross-section design was proposed.