• Title/Summary/Keyword: 보강판넬

Search Result 37, Processing Time 0.02 seconds

Effects of Reinforcing Method Influnced to the Shear Strength of Vertical and Horizontal Joints in Precast Concrete Large Panel Structures -Focused on the Vertical Joints and Slab-Slab Type Horizontal Joints- (대형판조립식 구조 수직.수평접합부의 전단강도에 미치는 보강방법의 영향-수직접합부 및 슬래브-슬래브 수평접합부를 중심으로-)

  • Chung, Lan;Park, Hyun-Soo;Cho, Seung-Ho
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.4
    • /
    • pp.171-179
    • /
    • 1996
  • A proposal of the basic fbrm on the design of joint parts that can increase the shear strength by the useful joint shapes of each member is intended. The vertical joint parameters are the number of' shear key and a variety of' reinfbrcement details and the horizontal joint paramctcrs arc t,hc number of shear key and the direction of' shear f'orcc. 10 PC panel vortical joint arid 12 PC panel horizontal joint specimens were tested to investigate the effects of these parameters. Test results show that : 1. The ductility of the test specimen that has the horizontal reinforcing steels is larger than that does not have. 2. The maximum resisting force of round bar specimen is similar to that of strand wire specimen under the condition of fixed horizontal displacement.

Mechanical Characteristics of 3-dimensional Woven Composite Stiffened Panel (3차원으로 직조된 복합재 보강 패널의 기계적 특성 연구)

  • Jeong, Jae-Hyeong;Hong, So-Mang;Byun, Joon-Hyung;Nam, Young-Woo;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.269-276
    • /
    • 2022
  • In this paper, a composite stiffened panel was fabricated using a three-dimensional weaving method that can reduce the risk of delamination, and mechanical properties such as buckling load and natural frequency were investigated. The preform of the stringer and skin of the stiffened panel were fabricated in one piece using T800 grade carbon fiber and then, resin (EP2400) was injected into the preform. The compression test and natural frequency measurement were performed for the stiffened panel, and the results were compared with the finite element analyses. In order to compare the performance of 3D weaving structures, the stiffened panels with the same configuration were fabricated using UD and 2D plain weave (fabric) prepregs. Compared to the tested buckling load of the 3D woven panel, the buckling loads of the stiffened panels of UD prepreg and 2D plain weave exhibited +20% and -3% differences, respectively. From this study, it was confirmed that the buckling load of the stiffened panel manufactured by 3D weaving method was lower than that of the UD prepreg panel, but showed a slightly higher value than that of the 2D plain weave panel.

Experimental Study on the Behavior of Hybrid Beam-Column Joints Consisted of Reinforced Concrete Column and Steel Beam (철근콘크리트 기둥 및 철골보로 구성된 복합구조의 접합분 거동에 관한 실험적 연구)

  • Choi, Keun-Do;You, Young-Chan;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.297-304
    • /
    • 2003
  • This paper presents the test results of RCS(Reinforced Concrete Steel) beam-column joint with various types of transverse reinforcements such as small-column-type transverse reinforcements, four-piece ㄱ-shape assembled hoops and four-piece ㄱ-shape welded hoops. Five interior beam-column joint specimens were tested to examine the seismic performance and the shear strengths. From the test results, it was found that all the specimens sustained their strength at large levels of story drift(${\theta}$=0.035) without significant loss of strength and stiffness. Therefore it was concluded that the seismic performance and shear strength of the proposed RCS joint are at least the same as those of the specimen with conventional reinforcing details. Also, the contribution of the outer panel to the shear strength of the joint should be evaluated by the compression strut mechanism rather than compression field mechanism.

Research about Application Possibility of Afforestation Reinforced Soil Steep Slope by Nonwoven Geotextile (부직포를 활용한 급경사 녹화보강토공법의 적용 가능성에 관한 연구)

  • Cho, Yong-Seong;Koo, Ho-Bon;Lee, Choon-Kil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.239-245
    • /
    • 2006
  • The steep slopes have been increased of new roads, industrial site development and large scale residential development. The preservation administration and steep slope construction are currently investigated by many researchers in Korea. However, concrete retaining wall or reinforced soil (i.e. Block or Pannel) are being applied for the steep slope, which results in the front face form of the structure being limited. This research investigates the method that can make up afforestation environment-friendly circumstances during the construction of steep slope structure. It is considered that steep slope reinforced structure would be possible based on the monitoring results about earth pressure, horizontal displacement and consolidation quality generated during the construction of whole constructing reinforced structure. Also, there no problems in grassy surface, drainage, and deformation in spite of rainy season after construction period and until now. So that the seeding soil layer surface reinforced soil method could be adopt for steep slope reinforced structure and others.

A Study on Development of Automotive Panel of Bumper Reinforcement with High Strength Steel Using Roll Forming Process (롤포밍 공정을 이용한 고장력강 재질의 범퍼보강 차체판넬 개발에 관한 연구)

  • Jung, Dong-Won;Kim, Dong-Hong;Kim, Bong-Chun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.840-844
    • /
    • 2012
  • Roll forming process is a sheet metal forming process where the forming occurs with rolls in several steps, often from an undeformed sheet to a product ready to use. And each pair of forming rolls installed in a forming machine operates a particular role in making up the required final cross-section. This process used to many industry manufactures and recently apply to automotive industry. This study, FEM simulation applied bumper reinforcement using SHAPE-RF software and analyzed about total effective strain, longitudinal strain, thickness according to the roll-pass.

Development of Rerofitting System for the Remodeling of Reinforced Concrete Frame Using High Ductile Fiber Composite Mortar PC Panel (고인성섬유 복합모르타르 PC판넬을 활용한 철근콘크리트 골조의 리모델링을 위한 보강시스템 개발)

  • Ha, Gee-Joo;Shin, Jong-Hak;Kim, Yun-Yong;Hong, Kun-Ho;Yang, Seung-Hyeok;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.66-69
    • /
    • 2006
  • Three reinforced concrete rigid frames and infilled rigid frames with new retrofitting system were tested under both vertical and cyclic loadings, Experimental programs were carried out to evaluate and improve the seismic performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. All the specimens were modeled in one-third scale size. For specimens(RFHPC, RFAR) designed by the improving of seismic performance of the rigid frame using the high ductile fiber composite PC panel and ALC panel system, load-carrying capacities were increased $1.45{\sim}2.28$ times, and hysteretic behavior was very stable during the final tests in comparison with the standard specimen(SRF).

  • PDF

A Study on the Tripping Behaviour of Stiffened Plate according to the Stiffener type (Stiffener형상에 따른 보강판의 트리핑거동에 관한 연구)

  • 고재용;박주신;박성현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.89-94
    • /
    • 2004
  • A steel plated is typically composed of plate panels. The overall failure of the structure is certainly affected and can be governed by the bulking and plastic collapse of these individual members. In the ultimate limit state design, therefore, a primary task is to accurately calculate the buckling and plastic collapse strength of such structural members. Structural elements making up steel palated structures do not work separately, resulting in high degree of redundancy and complexity in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy need and degree of complexity of the analysis to be used. Generally the more complex the analysis the greater is the accuracy that may be obtained. The aim of this study is the investigation of the effect of the tripping behaviour including section characteristic for a plate under uniaxial compression. For this purpose of study, in used elasto-plasticity deformation FEA method are used for this study.

  • PDF

An Experimental Study on Structural Behavior of Half Slab Reinforced by Truss Mesh (트러서메쉬 보강 하프 슬래브의 구조적 거동에 관한 실험적 연구)

  • Ko, Man-Young;Kim, Yong-Boo;Park, Hyun-Soo;Chung, Lan
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.4
    • /
    • pp.119-128
    • /
    • 1995
  • This paper summarizes experimental results for studying feasibility and structural behavior of' a half slab which is getting popularity in recent building construction in favour of the savings in manpower, coats, and construction period. 17 specimens were tested to investigate and analyze the flexural strength of precast concrete slab, half slab, and half slab-wall joint. The primary variables of the testing program were: thickness of precast concrete slab, truss mesh shape, and type of loadings. Test results show that the flexural strength of precast concrete slab in reverse loading is lower than the design strength, but the flexural strength of precast concrete slab, half slab and half slab-wall joint in direct loading is higher than the design srength. No horizontal cracks were found in the connection between insitu concrete and precast concrete slab. The flexural strength of half slab and half slab-wall joint was the same as that of reinforced concrete members. This study concludes that there will not be any structural problem in using a half slab reinforced by truss mesh if props spacing of 2.0m-2.5m, cleanness, and rough finishing between precast concrete and insitu concrete slab are kept.

Evaluation of Field Application of Precast Concrete-panel Retaining Wall attached to In-Situ Ground Using Field Test and Numerical Analysis (현장시험 및 수치해석 분석을 통한 원지반 부착식 판넬옹벽의 현장 적용성 평가)

  • Kwon, Yong Kyu;Min, Kyoung-nam;Hwang, Young-cheol;Ban, Hoki;Lee, Minjae
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.99-106
    • /
    • 2020
  • Man-made slope is inevitable to make a new road, which may result in environmental problems as well as collapse of slope. To prevent these problems, various methods such as geogrid reinforced retaining wall, precast concrete-panel retaining wall, and so on, have been introduced and developed. Among these methods, this paper presents the evaluation of field application of precast concrete-panel retaining wall attached to in-situ ground (so called top-down) compared to the conventional construction method of precast concrete-panel retaining wall (so called bottom-up) through the field test and numerical analysis. As a result, the safety factor of both methods in final stage is similar, however, top-down method guarantees the slope stability during the construction compared to bottom-up method.

Shear Strength of the Vertical Joints in Precast Concrete Large Panel Structures (대형 콘크리트 판넬구조의 수직접합부 전단강도에 관한 연구)

  • 서수연;이원호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.111-119
    • /
    • 1994
  • The strength of vertical joints of precast concrete large panel structures depends on the many factors, such as the bond strength of grout concrete (or mortar), the interlocking of the shear keys, the dowel action of horizontal bars. Many experimental studies have been conducted to in vestigate the shear strength of the vertical joints. In domestic, a few design formulas to predict shear strength of the vertical joint were proposed by some investigators, but formulas were based on limited experimental results. The objective of this paper is to propose a suitable formula for the shear strength of vertical joints with 94 vertical joints experimental data using the modified Mohr-Coulomb's 4ield theory and regression analysis. From the comparison of the proposed formula with others, it is shown that the proposed formula can be used economically for the design of vertical joints.