• Title/Summary/Keyword: 보간 방법

Search Result 1,066, Processing Time 0.027 seconds

Flow Visualization in the Branching Duct by Using Particle Imaging Velocimetry (입자영상유속계를 이용한 분기관내 유동가시화)

  • No, Hyeong-Un;Seo, Sang-Ho;Yu, Sang-Sin
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • The objective of this study is to analyse the flow field in the branching duct by visualizing the flow phenomena using the PIV system. A bifurcation model is fabricated with transparent acrylic resin to visualize the whole flow field with the PIV system. Water was used as the working fluid and the conifer powder as the tracer particles. The single-frame and two-frame methods of the PIV system and 2-frame of the grey level correlation method are applied to obtain the velocity vectors from the images captured in the flow filed. The velocity distributions in a lid-driven cavity flow are compared with the so-called standard experimental data, which was obtained from by 4-frame method in order to validate experimental results of the PIV measurements. The flow patterns of a Newtonian fluid in a branching duct were successfully visualized by using the PIV system and the sub-pixel and the area interpolation method were used to obtain the final velocity vectors. The velocity vectors obtained from the PIV system are in good agreement with the numerical results of the 3-dimensional branch flow. The results of numerical analyses and the PIV experiments for the three-dimensional flows in the branch ing duct show the recirculation zone distal to the branching point and the sizes of the recirculation length and height of the tow different methods are in good agreement.

  • PDF

설계홍수의 추정

  • Kim, Seung;Kim, Nam-Won;Kim, Hyun-Jun;Kim, Hyeong-Seop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1996.01a
    • /
    • pp.1-95
    • /
    • 1996
  • 전국에 산재한 수위관측지점의 관측개시 이후의 모든 홍수위 자료를 구성하고 주요 지점의 개별 홍수사상에 대한 단위도를 유도하여 지점별 대표단위도를 작성하였다. 또한 유도된 대표단위도를 이용하여 미계측 지점에 대한 단위도와 첨두홍수량을 추정하였다. 연구 결과를 요약하면 다음과 같다. 1991년과 1992년에 이어서 1993년에도 홍수위자료의 수집과 정리에 역점을 두어 관업을 수행하였으며 조선하천조사서, 조선하천조사연보, 한국수문조사연보 등의 각종 문헌에 수록되어 있는 주요 홍수사상의 수문곡선을 판독하여 전국 220개의 수위관측지점에 대하여 총 5,735개 사상의 홍수위 자료를 구축하였으며 이를 자료집으로 구성하였다. 홍수사상에 대한 단위도를 유도하기 위하여 시우량자료는 기상청 자료를 중심으로 구성하였으며 효율적이고 안정적인 능형회귀방법을 이용한 단위도 유도 방법을 적용하여 사용자가 화면을 통해서 홍수사상과 유도된 1mm-1hr 단위도를 보고 적합한 단위도를 선택할 수 있도록 단위도 유도 프로그램을 개발하였다. 대부분의 홍수사상이 지정홍수위 이상인 범위만이 정리되었는데 지정홍수위 이하의 부분은 일수위로부터 읽은 값을 참고로 하고 대수보간을 하여 자료를 구성하도록 하였다. 개발된 단위도 유도 프로그램을 사용하여 지점별 홍수사상별로 단위도를 유도하여 유역별로 총 65개 지점에 대하여 952개의 단위도를 유도하였는데 한강 유역은 16개 지점에서 263개의 단위도를 유도하였고 낙동강 유역은 28개 지점에 460개 단위도를, 금강 유역은 7개 지점 82개 단위도를, 영산강 유역은 7개 지점에서 88개 단위도를, 섬진강 유역은 7개 지점에서 59개의 단위도를 유도하였다. 유도된 단위도들을 지점별로 평균하고, 이를 참고로 하여 Nash 모형을 이용한 지점별 대표단위도를 유도하여 정리하였다. 또한 유도된 대표단위도를 유역에 따라서 지점별로 비교하여 상하류간의 관계를 분석하였으며 신뢰할만한 결과로 판단되었다. 유도된 대표단위도의 첨두유량 및 첨두시간을 유역면적 등과 비교하여 그 관계를 검토하였다. 유역면적과 첨두유량 및 유역면적과 첨두시간의 관계는 비교적 일정한 경향을 보여주었으며 이를 이용하여 미계측 유역의 1mm-1hr 단위도를 추정하였다. 2년 빈도의 설계강우량에 대해서 유역면적이 50, 100, 1,000, 10,000, 20,000$\textrm{km}^2$인 경우 첨두홍수를 추정하였으며 유출률을 0.9로 할 때 4장에서 분석, 제시된 지점별 평균연최대홍수와 비슷한 값을 보여주었다. 따라서 미계측 유역에서는 설계강우량만 주어진다면 본 연구에서 추정된 미계측 유역의 단위도 추정 방법을 이용하여 첨두홍수를 추정할 수 있을 것으로 판단된다. 본 연구의 단위도 유도 대상 지점은 전국의 수위관측지점이었으나 5대강을 제외한 기타 수계에 있어서는 수위자료뿐만 아니라 유량측정성과도 미비하여 단위도 유도를 하지 못하였다. 또한 유역면적 500$\textrm{km}^2$ 이하에서는 홍수위 자료는 있어도 유량측정성과가 없는 지점이 많았고 육량측정성과가 수 회에 불과한 지점이 대부분이었기 때문에 단위도를 유도할 수 없었다. 따라서 분석된 결과를 소유역으로 연장하는 것은 다소 무리가 따르며 대략 어느 정도가 될 것이라는 참고자료로 이용하는 것이 바람직하다고 본다. 현재의 여건에서는 소유역의 유량측정성과를 확충하는 일이 급선무일 것이다. 유역면적이 작은 수위 관측 지점에 대한 지속적인 유량측정이 절실히 요구된다.

  • PDF

Hierarchical Non-Rigid Registration by Bodily Tissue-based Segmentation : Application to the Visible Human Cross-sectional Color Images and CT Legs Images (조직 기반 계층적 non-rigid 정합: Visible Human 컬러 단면 영상과 CT 다리 영상에 적용)

  • Kim, Gye-Hyun;Lee, Ho;Kim, Dong-Sung;Kang, Heung-Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.259-266
    • /
    • 2003
  • Non-rigid registration between different modality images with shape deformation can be used to diagnosis and study for inter-patient image registration, longitudinal intra-patient registration, and registration between a patient image and an atlas image. This paper proposes a hierarchical registration method using bodily tissue based segmentation for registration between color images and CT images of the Visible Human leg areas. The cross-sectional color images and the axial CT images are segmented into three distinctive bodily tissue regions, respectively: fat, muscle, and bone. Each region is separately registered hierarchically. Bounding boxes containing bodily tissue regions in different modalities are initially registered. Then, boundaries of the regions are globally registered within range of searching space. Local boundary segments of the regions are further registered for non-rigid registration of the sampled boundary points. Non-rigid registration parameters for the un-sampled points are interpolated linearly. Such hierarchical approach enables the method to register images efficiently. Moreover, registration of visibly distinct bodily tissue regions provides accurate and robust result in region boundaries and inside the regions.

Unsupervised Non-rigid Registration Network for 3D Brain MR images (3차원 뇌 자기공명 영상의 비지도 학습 기반 비강체 정합 네트워크)

  • Oh, Donggeon;Kim, Bohyoung;Lee, Jeongjin;Shin, Yeong-Gil
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.5
    • /
    • pp.64-74
    • /
    • 2019
  • Although a non-rigid registration has high demands in clinical practice, it has a high computational complexity and it is very difficult for ensuring the accuracy and robustness of registration. This study proposes a method of applying a non-rigid registration to 3D magnetic resonance images of brain in an unsupervised learning environment by using a deep-learning network. A feature vector between two images is produced through the network by receiving both images from two different patients as inputs and it transforms the target image to match the source image by creating a displacement vector field. The network is designed based on a U-Net shape so that feature vectors that consider all global and local differences between two images can be constructed when performing the registration. As a regularization term is added to a loss function, a transformation result similar to that of a real brain movement can be obtained after the application of trilinear interpolation. This method enables a non-rigid registration with a single-pass deformation by only receiving two arbitrary images as inputs through an unsupervised learning. Therefore, it can perform faster than other non-learning-based registration methods that require iterative optimization processes. Our experiment was performed with 3D magnetic resonance images of 50 human brains, and the measurement result of the dice similarity coefficient confirmed an approximately 16% similarity improvement by using our method after the registration. It also showed a similar performance compared with the non-learning-based method, with about 10,000 times speed increase. The proposed method can be used for non-rigid registration of various kinds of medical image data.

Data-centric XAI-driven Data Imputation of Molecular Structure and QSAR Model for Toxicity Prediction of 3D Printing Chemicals (3D 프린팅 소재 화학물질의 독성 예측을 위한 Data-centric XAI 기반 분자 구조 Data Imputation과 QSAR 모델 개발)

  • ChanHyeok Jeong;SangYoun Kim;SungKu Heo;Shahzeb Tariq;MinHyeok Shin;ChangKyoo Yoo
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.523-541
    • /
    • 2023
  • As accessibility to 3D printers increases, there is a growing frequency of exposure to chemicals associated with 3D printing. However, research on the toxicity and harmfulness of chemicals generated by 3D printing is insufficient, and the performance of toxicity prediction using in silico techniques is limited due to missing molecular structure data. In this study, quantitative structure-activity relationship (QSAR) model based on data-centric AI approach was developed to predict the toxicity of new 3D printing materials by imputing missing values in molecular descriptors. First, MissForest algorithm was utilized to impute missing values in molecular descriptors of hazardous 3D printing materials. Then, based on four different machine learning models (decision tree, random forest, XGBoost, SVM), a machine learning (ML)-based QSAR model was developed to predict the bioconcentration factor (Log BCF), octanol-air partition coefficient (Log Koa), and partition coefficient (Log P). Furthermore, the reliability of the data-centric QSAR model was validated through the Tree-SHAP (SHapley Additive exPlanations) method, which is one of explainable artificial intelligence (XAI) techniques. The proposed imputation method based on the MissForest enlarged approximately 2.5 times more molecular structure data compared to the existing data. Based on the imputed dataset of molecular descriptor, the developed data-centric QSAR model achieved approximately 73%, 76% and 92% of prediction performance for Log BCF, Log Koa, and Log P, respectively. Lastly, Tree-SHAP analysis demonstrated that the data-centric-based QSAR model achieved high prediction performance for toxicity information by identifying key molecular descriptors highly correlated with toxicity indices. Therefore, the proposed QSAR model based on the data-centric XAI approach can be extended to predict the toxicity of potential pollutants in emerging printing chemicals, chemical process, semiconductor or display process.

Redefinition of the Original Benchmark Height using Long-term Tide Observations Analysis and GPS Levelling Methods (장기간 조위관측자료 분석과 GPS 수준측량 수준원점 성과 재정의)

  • Jung, Tae-Jun;Yoon, Hong-Sic;Hwang, Jin-Sang;Lee, Dong-Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.393-403
    • /
    • 2011
  • In this study, we suggested the period of tide observations is proper to calculate the mean sea level(MSL) precisely on Incheon tide station using wavelet analysis, and newly determined then the vertical reference surface of Korea using the calculated MSL. In order to calculate the height difference between the calculated MSL and specific ground station (ICGP) near the Incheon tide stations, we performed the laser measurements directly to the sea surface where located below ICGP. The orthometric-height of ICGP was determined that corrected the height difference to the calculated MSL using linear interpolation method. Finally, we connected the orthometric-height of ICGP with the original benchmark (ORBM) using GPS leveling methods for determining the new orthometric-height of ORBM. As the results, there is a variation amount of 0.026m between the new MSL was calculated in this study and old MSL was calculated in 1910's. Also, there is a difference of 0.035m between the new and old orthometric-heights of ORBM. The connection (or leveling) error of 0.009m was revealed in new orthometric height of ORBM with consideration of MSL variation which may caused by the error of GPS ellipsoid height and/or geoid model. In this study, we could be determined precisely the orthometric-height of ORBM based on the new MSL of Incheon Bay using only GPS leveling method, not a spirit leveling method. Therefore, it is necessary to determine the vertical datum strictly using long-term and continuously tide observations more than 19 years and to use the GPS leveling method widely in the height leveling work for the effective changeover from the orthonormal to the orthometric in national height system.

Inverse characterization method for color gamut extension in multi-color printer (색역 확장을 위한 멀티 칼라 프린터의 역 특성화 방법)

  • Jang, In-Su;Son, Chang-Hwan;Park, Tae-Yong;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.46-54
    • /
    • 2007
  • In current printer industry, four or more colorants are added for color gamut extension because the gamut of printer is smaller than other devices. However, these additional colorants make a redundancy problem that several combinations of colorants reproduced same color stimulus in colorimetric inverse characterization process. Thus, we propose a method of colorimetric inverse characterization using color correlation between colorant's amount. First, for analyzing the combination of colorants which represent the same color stimulus, we estimate the color stimulus for all combination of colorants by Cellular Yule-Nielsen Spectral Neugebauer printer model. The combination of colorants which has higher color correlation factor comparing combinations of colorant around itself in color space is selected. It can reduced the color difference from the tetrahedral interpolation process which is estimation of the output value(colorants combination) for arbitrary input(color stimulus). The selected combinations of colorants and their color stimulus are stored to the lookup table. In experiment, the CMYKGO printer was used. As a result, the dark region of color gamut was extended and the color tone was more naturally represented.

Pattern Recognition Improvement of an Ultrasonic Sensor System Using Neuro-Fuzzy Signal Processing (초음파센서 시스템의 패턴인식 개선을 위한 뉴로퍼지 신호처리)

  • Na, Seung-You;Park, Min-Sang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.17-26
    • /
    • 1998
  • Ultrasonic sensors are widely used in various applications due to advantages of low cost, simplicity in construction, mechanical robustness, and little environmental restriction in usage. But for the application of object recognition, ultrasonic sensors exhibit several shortcomings of poor directionality which results in low spatial resolution of objects, and specularity which gives frequent erroneous range readings. The time-of-flight(TOF) method generally used for distance measurement can not distinguish small object patterns of plane, corner or edge. To resolve the problem, an increased number of the sensors in the forms of a linear array or 2-dimensional array of the sensors has been used. Also better resolution has been obtained by shifting the array in several steps using mechanical actuators. Also simple patterns are classified based on analyzing signal reflections. In this paper we propose a method of a sensor array system with improved capability in pattern distinction using electronic circuits accompanying the sensor array, and intelligent algorithm based on neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. A set of different return signals from neighborhood sensors is manipulated to provide enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.

  • PDF

An Efficient Dead Pixel Detection Algorithm Implementation for CMOS Image Sensor (CMOS 이미지 센서에서의 효율적인 불량화소 검출을 위한 알고리듬 및 하드웨어 설계)

  • An, Jee-Hoon;Shin, Seung-Gi;Lee, Won-Jae;Kim, Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.55-62
    • /
    • 2007
  • This paper proposes a defective pixel detection algorithm and its hardware structure for CCD/CMOS image sensor. In previous algorithms, the characteristics of image have not been considered. Also, some algorithms need quite a time to detect defective pixels. In order to make up for those disadvantages, the proposed defective pixel detection method detects defective pixels efficiently by considering the edges in the image and verifies them using several frames while checking scene-changes. Whenever scene-change is occurred, potentially defective pixels are checked and confirmed whether it is defective or not. Test results showed that the correct detection rate in a frame was increased 6% and the defective pixel verification time was decreased 60%. The proposed algorithm was implemented with verilog HDL. The edge indicator in color interpolation block was reused. Total logic gate count was 5.4k using 0.25um CMOS standard cell library.

Vergence Control of the Parallel-axis Stereo Camera using Signal Processing (신호처리를 이용한 평행축 입체 카메라의 주시각 제어)

  • Lee, Gwang-Soon;Kim, Hyoung-Nam;Hur, Nam-Ho;Um, Gi-Mun;Ahn, Chung-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.151-156
    • /
    • 2003
  • The vergence control method is presented for a parallel-axls stereo camera (PASC) using a signal processing technique such as shift, (rotation), and scaling. The PASC is considered as the simplest one of binocular stereo cameras. However, its major limitation lies in the controllability of vergence since its left and right imaging sensors of CCDs are fixed. On the other hand, a horizontal-moving-axis stereo camera (HMASC) with movable imaging sensors is able to control the vergence by moving its CCDs horizontally. In spite of its vergence controllability, there is a major drawback in the implementation because of complicated mechanical structure and the additional cost. To overcome the vergence control problem of the PASC, an operational principle of the HMASC is applied to the PASC. To be specific, without any additional hardware the vergence control problem of the PASC is solved with the signal processing technique. Assuming the virtual displacement between CCD's, a disappearing part of acquired images is removed and the original image site is recovered via interpolation. Experimental results show that the vergence control between stereo images captured by the PASC it possible with an acceptable degradation of the image quality defending on the virtual displacement of CCDs.