• 제목/요약/키워드: 병렬 컴퓨팅

검색결과 462건 처리시간 0.019초

타원곡선을 암호시스템에 사용되는 최적단위 연산항을 기반으로 한 기저체 연산기의 하드웨어 구현 (A Hardware Implementation of the Underlying Field Arithmetic Processor based on Optimized Unit Operation Components for Elliptic Curve Cryptosystems)

  • 조성제;권용진
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권1호
    • /
    • pp.88-95
    • /
    • 2002
  • 1985년 N. Koblitz와 V. Miller가 각각 독립적으로 제안한 타원곡선 암호시스템(ECC : Elliptic Curve Cryptosystems)은 보다 짧은 비트 길이의 키만으로도 다른 공개키 시스템과 동일한 수준의 안전도를 유지할 수 있다는 장점을 인해 IC 카드와 같은 메모리와 처리능력이 제한된 하드웨어에도 이식가능 하다. 또한 동일한 유한체 연산을 사용하면서도 다른 타원곡선을 선택할 수 있어서 추가적인 보안이 가능하기 때문에 고수준의 안전도를 유지하기 위한 차세대 암호 알고리즘으로 각광 받고 있다. 본 논문에서는 효율적인 타원곡선 암호시스템을 구현하는데 있어 가장 중요한 부분 중 하나인 타원곡선 상의 점을 고속으로 연산할 수 있는 전용의 기저체 연산기 구조를 제안하고 실제 구현을 통해 그 기능을 검증한다. 그리고 기저체 연산의 면밀한 분석을 통해 역원 연산기의 하드웨어 구현을 위하여 최적인 단위 연산항의 도출에 기반을 둔 효율적인 방법론을 제시하고, 이를 바탕으로 현실적인 제한 조건하에서 구현 가능한 수준의 게이트 수를 가지는 고속의 역원 연산기 구조를 제안한다. 또한, 본 논문에서는 제안된 방법론을 바탕으로 실제 구현된 설계회로가 기존 논문에서 비해 게이트 수는 약 8.8배가 증가하지만, 승법연산 속도는 약 150배, 역원연산 속도는 약 480배 정도 향상되는 우수한 연구 결과가 얻어짐을 보인다. 이것은 병렬성을 적용함으로서 당연히 얻어지는 속도면에서의 이득을 능가하는 성능으로, 본 논문에서 제안한 구조의 우수성을 입증하는 결과이다. 실제로, 승법 연산기의 속도에 관계없이 역원연산의 수행시간은 [lo $g_2$(m-1)]$\times$(clock cycle for one multiplication)으로 최적화가 되며, 제안한 구조는 임의의 유한체 $F_{2m}$에 적용가능하다. 제안한 전용의 연산기는 암호 프로세서 설계의 기초자료로 활용되거나, 타원곡선 암호 시스템 구현시 직접 co-processor 형식으로 임베드 되어 사용할 수 있을 것으로 사료된다.다.

전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법 (Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification)

  • 바트후 ?바자브;주마벡 알리하노브;팡양;고승현;조근식
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet)은 시각적 특징의 계층 구조를 분석하고 학습할 수 있는 대표적인 심층 신경망이다. 첫 번째 신경망 모델인 Neocognitron은 80 년대에 처음 소개되었다. 당시 신경망은 대규모 데이터 집합과 계산 능력이 부족하여 학계와 산업계에서 널리 사용되지 않았다. 그러나 2012년 Krizhevsky는 ImageNet ILSVRC (Large Scale Visual Recognition Challenge) 에서 심층 신경망을 사용하여 시각적 인식 문제를 획기적으로 해결하였고 그로 인해 신경망에 대한 사람들의 관심을 다시 불러 일으켰다. 이미지넷 첼린지에서 제공하는 다양한 이미지 데이터와 병렬 컴퓨팅 하드웨어 (GPU)의 발전이 Krizhevsky의 승리의 주요 요인이었다. 그러므로 최근의 딥 컨볼루션 신경망의 성공을 병렬계산을 위한 GPU의 출현과 더불어 ImageNet과 같은 대규모 이미지 데이터의 가용성으로 정의 할 수 있다. 그러나 이러한 요소는 많은 도메인에서 병목 현상이 될 수 있다. 대부분의 도메인에서 ConvNet을 교육하기 위해 대규모 데이터를 수집하려면 많은 노력이 필요하다. 대규모 데이터를 보유하고 있어도 처음부터 ConvNet을 교육하려면 많은 자원과 시간이 소요된다. 이와 같은 문제점은 전이 학습을 사용하면 해결할 수 있다. 전이 학습은 지식을 원본 도메인에서 새 도메인으로 전이하는 방법이다. 전이학습에는 주요한 두 가지 케이스가 있다. 첫 번째는 고정된 특징점 추출기로서의 ConvNet이고, 두번째는 새 데이터에서 ConvNet을 fine-tuning 하는 것이다. 첫 번째 경우, 사전 훈련 된 ConvNet (예: ImageNet)을 사용하여 ConvNet을 통해 이미지의 피드포워드 활성화를 계산하고 특정 레이어에서 활성화 특징점을 추출한다. 두 번째 경우에는 새 데이터에서 ConvNet 분류기를 교체하고 재교육을 한 후에 사전 훈련된 네트워크의 가중치를 백프로퍼게이션으로 fine-tuning 한다. 이 논문에서는 고정된 특징점 추출기를 여러 개의 ConvNet 레이어를 사용하는 것에 중점을 두었다. 그러나 여러 ConvNet 레이어에서 직접 추출된 차원적 복잡성을 가진 특징점을 적용하는 것은 여전히 어려운 문제이다. 우리는 여러 ConvNet 레이어에서 추출한 특징점이 이미지의 다른 특성을 처리한다는 것을 발견했다. 즉, 여러 ConvNet 레이어의 최적의 조합을 찾으면 더 나은 특징점을 얻을 수 있다. 위의 발견을 토대로 이 논문에서는 단일 ConvNet 계층의 특징점 대신에 전이 학습을 위해 여러 ConvNet 계층의 특징점을 사용하도록 제안한다. 본 논문에서 제안하는 방법은 크게 세단계로 이루어져 있다. 먼저 이미지 데이터셋의 이미지를 ConvNet의 입력으로 넣으면 해당 이미지가 사전 훈련된 AlexNet으로 피드포워드 되고 3개의 fully-connected 레이어의 활성화 틀징점이 추출된다. 둘째, 3개의 ConvNet 레이어의 활성화 특징점을 연결하여 여러 개의 ConvNet 레이어의 특징점을 얻는다. 레이어의 활성화 특징점을 연결을 하는 이유는 더 많은 이미지 정보를 얻기 위해서이다. 동일한 이미지를 사용한 3개의 fully-connected 레이어의 특징점이 연결되면 결과 이미지의 특징점의 차원은 4096 + 4096 + 1000이 된다. 그러나 여러 ConvNet 레이어에서 추출 된 특징점은 동일한 ConvNet에서 추출되므로 특징점이 중복되거나 노이즈를 갖는다. 따라서 세 번째 단계로 PCA (Principal Component Analysis)를 사용하여 교육 단계 전에 주요 특징점을 선택한다. 뚜렷한 특징이 얻어지면, 분류기는 이미지를 보다 정확하게 분류 할 수 있고, 전이 학습의 성능을 향상시킬 수 있다. 제안된 방법을 평가하기 위해 특징점 선택 및 차원축소를 위해 PCA를 사용하여 여러 ConvNet 레이어의 특징점과 단일 ConvNet 레이어의 특징점을 비교하고 3개의 표준 데이터 (Caltech-256, VOC07 및 SUN397)로 실험을 수행했다. 실험결과 제안된 방법은 Caltech-256 데이터의 FC7 레이어로 73.9 %의 정확도를 얻었을 때와 비교하여 75.6 %의 정확도를 보였고 VOC07 데이터의 FC8 레이어로 얻은 69.2 %의 정확도와 비교하여 73.1 %의 정확도를 보였으며 SUN397 데이터의 FC7 레이어로 48.7%의 정확도를 얻었을 때와 비교하여 52.2%의 정확도를 보였다. 본 논문에 제안된 방법은 Caltech-256, VOC07 및 SUN397 데이터에서 각각 기존에 제안된 방법과 비교하여 2.8 %, 2.1 % 및 3.1 %의 성능 향상을 보였다.