• Title/Summary/Keyword: 병렬 계류

Search Result 10, Processing Time 0.023 seconds

Motion Response and Mooring Analysis of Mobile Harbors Moored in Side-by-side (병렬 계류된 모바일하버의 운동응답 및 계류 해석)

  • Kim, Young-Bok
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.53-60
    • /
    • 2009
  • Recently, since there are several problems in space, the infra-structure and the facilities in the contiguity of the existing harbors due to the trend of enlarging the container capacity of the large container vessel, a special floating platform named as the Mobile Harbor has been proposed conceptually as an effective solution of those problems. Two kinds of hull shapes, a conventional mono-hull type and a catamaran type, are proposed as midway feeders to transfer containers to the harbor on land from a large container ship on near shore. In this study, the motion response and mooring analysis are carried out for comparing the global performance of two types of Mobile Harbor. Robot arm mooring facility specially is devised and newly tried to use for the safe fixation of a large container ship and the Mobile Harbor on near shore. It would be expected for this comparison study to give a guideline to design the efficient hull form for a midway loader.

Experimental Study on Damping of Side-by-Side Moored Vessels (병렬계류된 선박의 감쇠력에 관한 실험연구)

  • KIM JIN-HA;HONG SA-YOUNG;KIM YOUNC-SIK;KIM DEOK-SU;KIM YOUNG-SU
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.160-165
    • /
    • 2004
  • Low-frequency damping characteristics of side-by-side moored LNG-FPSO and LNGC arc investigated through a series of free decay model tests in calm water and under wind load condition. It is shown that low frequency damping of LNGC changes dramatically, sway damping increases more than six times for 4m distance condition while it decreases by $30\%$ for 20m distance compared with a single LNGC case. Simulation using the experimental data enhances the results, which demonstrates the necessity of experimental low-frequency damping coefficients for simulation of side-by-side vessels motion behavior.

  • PDF

Loads of a Rigid Link Connecting a Container Ship and a Catamaran Type Container Offloading Vessel in Waves (파랑중 컨테이너선과 하역선의 연결장치에 작용하는 하중계산)

  • Hong, Do-Chun;Kim, Yong-Yook;Han, Soon-Hung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.83-90
    • /
    • 2010
  • The hydrodynamic interaction of two floating bodies in waves freely floating or connected by a rigid link is studied by using a boundary element method in the frequency-domain. The exact two-body hydrodynamic coefficients of added mass, wave damping and exciting force are calculated from the radiation-diffraction potential solution of the improved Green integral equation associated with the free surface Green function. The irregular frequencies in the conventional Green integral equation make it difficult to predict the physical resonance of the fluid in the gap between two bodies floating side by side. However, the improved Green integral equation employed in this study is free of irregular frequencies and always yields the exact solution of the multi-body radiation-diffraction potential boundary value problem. The 6 degree-of-freedom motions of two bodies freely floating side by side or connected parallel by a rigid link have been calculated for the incident wave frequencies ranging from 0.1 to 5 radians per second in head, left and right bow quartering seas. The 6-component load of the rigid link have also been presented.

Experimental Study on Interaction of Side-by-Side Moored Vessels (병렬계류 선박의 동유체력 상호간섭에 관한 실험연구)

  • Kim, Jin-Ha;Hong, Sa-Young;Cho, Seok-Gyo;Choi, Yoon-Rak;Song, Myong-Jae;Kim, Duk-Su
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.208-213
    • /
    • 2003
  • Recently, Side-by-side mooring system of LNG FPSO and shuttle tanker is one of hot issues in offshore floating body dynamics, which requires accurate analysis of hydrodynamic interactions between side by side moored LNG FPSO and shuttle tanker than tandem moored vessels. This paper aims to investigate basic interaction characteristics of side-by-side moored multiple vessels both numerically and experimentally. A higher-order boundary element method combined with generalized nwde approach will be applied to analysis of motion and drift force of side by side moored multiple-body. Model tests were carried out for the same multiple floating bodies in regular and irregular waves. Motion responses and drift forces of vessels for two mooring situation(coupled & uncoupled) were compared with those of calculations. Discussions will be highlighted on applicability of numerical method to prediction of sophisticated multi-body interaction problem of which motion behavior is very important to analysis of mooring dynamics of deep sea floating bodies.

  • PDF

SIMULATION OF RELATIVE MOTION OF FLOATING BODIES INCLUDING EFFECTS OF A FENDER AND A HAWSER (방현재와 계류삭 효과를 고려한 부유체의 상대운동 모사)

  • Shin, Sangmook
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • A developed code is applied to simulate relative motion of floating bodies in a side-by-side arrangement, including effects of a fender and a hawser. The developed code is based on the flux-difference splitting scheme for immiscible incompressible fluids and the hybrid Cartesian/immersed boundary method. To validate the developed code for free surface flows around deforming boundaries, the water wave generation is simulated, which is caused by bed movement. The computed wave profile and time histories of wave elevation are compared with other experimental and computational results. The effects of a fender and a hawser are modeled by asymmetric force acting on the floating bodies according to a relative displacement with the bounds, in which the fender and the hawser exert no force on the bodies. It has been observed that the floating body can be accelerated by a gap flow due to a phase difference caused by the free surface. Grid independency is established for the computed time history of the body velocity, based on three different size grids.

Dynamic Analysis of Floating Bodies Considering Multi-body Interaction Effect (다물체 연성효과를 고려한 부유체의 동적거동 안전성 해석)

  • Kim, Young-Bok;Kim, Moo-Hyun;Kim, Yong-Yook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.659-666
    • /
    • 2009
  • Recently, there are several problems in space, contiguity and facility of the existing harbors issued due to the trend of enlarging the container capacity of the large container vessel, the Mobile Harbor has been proposed conceptually as an effective solution for those problems. This concept is a kind of transfer loader of the containers from the large container ship, which is a floating barge with a catamaran type in the underwater part, and so prompt maneuverability and work effectiveness. For the safe mooring of two floating bodies, a container and the mobile harbor, in the near sea apart from the quay, a robot arm mooring facility specially devised would be designed and verified through comparison study under various environmental sea condition in the inner and outer harbor. DP system (Dynamic Positioning System) using the azimuth thruster and a pneumatic fender, etc, will be considered as a next research topic for the mooring security of multi-body floaters.

Wind tunnel test of wind loads and current loads acting on FLBT and LNG bunkering shuttles in side-by-side configuration and comparison with empirical formula (병렬 배치된 FLBT 및 LNG-BS에 작용하는 풍하중 및 조류하중에 대한 풍동 시험 및 경험식 비교 연구)

  • Park, Byeongwon;Jung, Jae-Hwan;Hwang, Sung-Chul;Cho, Seok-Kyu;Jung, Dongho;Sung, Hong Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.266-273
    • /
    • 2017
  • In recent years, LNG bunkering terminals are needed to supply LNG as fuel to meet the emission requirements of the International Maritime Organization (IMO). A floating LNG bunkering terminal (FLBT) is one of the most cost-effective and environmentally friendly LNG bunkering systems for storing LNG and transferring it directly to an LNG fuel vessel. The FLBT maintains its position using mooring systems such as spread mooring and turret mooring. The loads on the vessel and mooring lines must be carefully determined to maintain their positions within the operable area. In this study, the wind loads acting in several side-by-side arrangements on the FLBT and LNG-BS were estimated using wind tunnel tests in the Force Technology, and the shielding effect due to the presence of ships upstream was evaluated. In addition, the empirical formulations proposed by Fujiwara et al. (2012) were used to estimate the wind force coefficients acting on the FLBT and those results were compared with experimental results.

Dynamic Analysis of Floating Multi-Bodies Considering Crane Impact Loads (크레인 충격하중을 고려한 다중 부유체 운동해석)

  • Kim, Young-Bok;Kim, Yong-Yook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.273-279
    • /
    • 2012
  • The concept of the Mobile Harbor had been made recently as a kind of feeder vehicle to transfer a certain amount of container boxes (i.e. 250 TEU at a time) from main ocean container vessels over 5,000 TEU capacity to the container terminal on land. In a harbor a short distance apart from the land, the container loading/unloading operation has to be performed on the main deck of the Mobile Harbor using the container cranes in the state of side-by-side mooring with protection of fenders and robot arms in the gap. Even under the ocean condition of the sea state class 2 or 3, the operation has to be confirmed to be safely performed. In this situation, the floating bodies considering the multiple-body interaction effect also has to be examined whether they might behave safely or not. Especially, this study focuses on the dynamic behavior of the Mobile harbor when a container box is hanged on the crane and the impact load due to the slewing motion is imposed in a certain sea state. The motion response should be controlled within the motion level to assure the safe operation.

Experimental Study on Floating LNG Bunkering Terminal for Assessment of Loading and Offloading Performance (FLBT의 적하역 안정성 평가를 위한 실험적 연구)

  • Jung, Dong-Woo;Kim, Yun-Ho;Cho, Seok-Kyu;Jung, Dong-Ho;Sung, Hong-Gun;Kwon, Sun-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.51-61
    • /
    • 2018
  • In this study, the operability of an FLBT (floating LNG bunkering terminal) was evaluated experimentally. Model tests were conducted in the KRISO (Korea Research Institute of Ships and Ocean Engineering) ocean engineering basin. An FLBT, an LNG carrier, and two LNG bunkering shuttles were moored side by side with mooring ropes and fenders. Two white-noise wave cases, one irregular wave case, and various regular wave cases were generated. The relative local motions between each LNG loading arm and its corresponding manifold in the initial design configuration were calculated from measured 6-DOF motions at the center of gravity of each of the four vessels. Furthermore, the locations of the LNG loading arms and manifolds were varied to minimize the relative local motions.

The Effects of Sloshing on the Responses of an LNG Carrier Moored in a Side-by-side Configuration with an Offshore Plant (해양플랜트에 병렬 계류된 LNG 운반선의 거동에 슬로싱이 미치는 영향)

  • Lee, Seung-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.16-21
    • /
    • 2010
  • During the loading/offloading operation of a liquefied natural gas carrier (LNGC) that is moored in a side-by-side configuration with an offshore plant, sloshing that occurs due to the partially filled LNG tank and the interactive effect between the two floating bodies are important factors that affect safety and operability. Therefore, a time-domain software program, called CHARM3D, was developed to consider the interactions between sloshing and the motion of a floating body, as well as the interactions between multiple bodies using the potential-viscous hybrid method. For the simulation of a floating body in the time domain, hydrodynamic coefficients and wave forces were calculated in the frequency domain using the 3D radiation/diffraction panel program based on potential theory. The calculated values were used for the simulation of a floating body in the time domain by convolution integrals. The liquid sloshing in the inner tanks is solved by the 3D-FDM Navier-Stokes solver that includes the consideration of free-surface non-linearity through the SURF scheme. The computed sloshing forces and moments were fed into the time integration of the ship's motion, and the updated motion was, in turn, used as the excitation force for liquid sloshing, which is repeated for the ensuing time steps. For comparison, a sloshing motion coupled analysis program based on linear potential theory in the frequency domain was developed. The computer programs that were developed were applied to the side-by-side offloading operation between the offshore plant and the LNGC. The frequency-domain results reproduced the coupling effects qualitatively, but, in general, the peaks were over-predicted compared to experimental and time-domain results. The interactive effects between the sloshing liquid and the motion of the vessel can be intensified further in the case of multiple floating bodies.