• Title/Summary/Keyword: 병렬계류선박

Search Result 3, Processing Time 0.022 seconds

Experimental Study on Damping of Side-by-Side Moored Vessels (병렬계류된 선박의 감쇠력에 관한 실험연구)

  • KIM JIN-HA;HONG SA-YOUNG;KIM YOUNC-SIK;KIM DEOK-SU;KIM YOUNG-SU
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.160-165
    • /
    • 2004
  • Low-frequency damping characteristics of side-by-side moored LNG-FPSO and LNGC arc investigated through a series of free decay model tests in calm water and under wind load condition. It is shown that low frequency damping of LNGC changes dramatically, sway damping increases more than six times for 4m distance condition while it decreases by $30\%$ for 20m distance compared with a single LNGC case. Simulation using the experimental data enhances the results, which demonstrates the necessity of experimental low-frequency damping coefficients for simulation of side-by-side vessels motion behavior.

  • PDF

Experimental Study on Interaction of Side-by-Side Moored Vessels (병렬계류 선박의 동유체력 상호간섭에 관한 실험연구)

  • Kim, Jin-Ha;Hong, Sa-Young;Cho, Seok-Gyo;Choi, Yoon-Rak;Song, Myong-Jae;Kim, Duk-Su
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.208-213
    • /
    • 2003
  • Recently, Side-by-side mooring system of LNG FPSO and shuttle tanker is one of hot issues in offshore floating body dynamics, which requires accurate analysis of hydrodynamic interactions between side by side moored LNG FPSO and shuttle tanker than tandem moored vessels. This paper aims to investigate basic interaction characteristics of side-by-side moored multiple vessels both numerically and experimentally. A higher-order boundary element method combined with generalized nwde approach will be applied to analysis of motion and drift force of side by side moored multiple-body. Model tests were carried out for the same multiple floating bodies in regular and irregular waves. Motion responses and drift forces of vessels for two mooring situation(coupled & uncoupled) were compared with those of calculations. Discussions will be highlighted on applicability of numerical method to prediction of sophisticated multi-body interaction problem of which motion behavior is very important to analysis of mooring dynamics of deep sea floating bodies.

  • PDF

Experimental Study on Floating LNG Bunkering Terminal for Assessment of Loading and Offloading Performance (FLBT의 적하역 안정성 평가를 위한 실험적 연구)

  • Jung, Dong-Woo;Kim, Yun-Ho;Cho, Seok-Kyu;Jung, Dong-Ho;Sung, Hong-Gun;Kwon, Sun-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.51-61
    • /
    • 2018
  • In this study, the operability of an FLBT (floating LNG bunkering terminal) was evaluated experimentally. Model tests were conducted in the KRISO (Korea Research Institute of Ships and Ocean Engineering) ocean engineering basin. An FLBT, an LNG carrier, and two LNG bunkering shuttles were moored side by side with mooring ropes and fenders. Two white-noise wave cases, one irregular wave case, and various regular wave cases were generated. The relative local motions between each LNG loading arm and its corresponding manifold in the initial design configuration were calculated from measured 6-DOF motions at the center of gravity of each of the four vessels. Furthermore, the locations of the LNG loading arms and manifolds were varied to minimize the relative local motions.