인터넷 기반 분산/병렬 처리 시스템인 PDP(Parallel/Distributed Processing)는 인터넷의 유휴상태 호스트들을 이용하여 대용량 작업을 병렬로 처리해서 전체 수행 시간을 감소시킨다. 본 연구에서는 실시간 네트워크 모니터링을 활용하여 수시로 변화하는 네트워크 환경에 적응하여 병렬/분산 처리되는 방안을 제안한다. 실시간 네트워크 모니터링 정보를 PDP 주요 핵심 알고리즘들에 적용하여 네트워크 과부하 및 결함으로 발생하는 작업 지연 요소에 적응적으로 대처함으로써 전체 성능이 향상됨을 보인다.
최근 TV 서비스의 가입자 및 TV 프로그램 콘텐츠의 급격한 증가에 따라 빅데이터 처리에 적합한 추천 시스템의 필요성이 증가하고 있다. 본 논문은 사용자들의 간접 평가 데이터 기반의 추천 시스템 디자인 시, 누적된 사용자의 과거 이용내역 데이터를 저장하지 않고 새로 생성된 사용자 이용내역 데이터를 학습하는 효율적인 알고리즘이면서, 시간 흐름에 따라 사용자들의 선호도 변화 및 TV 프로그램 스케줄 변화의 추적이 가능한 토픽 모델링 기반의 알고리즘을 제안한다. 빅데이터 처리를 위해서는 분산처리 형태의 알고리즘을 피할 수 없는데, 기존의 연구들 중 토픽 모델링 기반의 추론 알고리즘의 병렬분산처리 과정 중에 핵심이 되는 부분은 많은 데이터를 여러 대의 기계에 나누어 병렬분산 학습하면서 전역변수 데이터를 동기화하는 부분이다. 그런데, 이러한 전역데이터 동기화 기술에 있어, 여러 대의 컴퓨터를 병렬분산처리하기위한 하둡 기반의 시스템 및 서버-클라이언트간의 중재, 고장 감내 시스템 등을 모두 고려한 알고리즘들이 제안되어 왔으나, 네트워크 대역폭 한계로 인해 데이터 증가에 따른 동기화 시간 지연은 피할 수 없는 부분이다. 이에, 본 논문에서는 빅데이터 처리를 위해 사용자들을 클러스터링하고, 클러스터별 제안 알고리즘으로 전역데이터 동기화를 수행한 것과 지역 데이터를 활용하여 추론 연산한 결과, 클러스터별 지역별 TV프로그램 시청 토큰 별 은닉토픽 할당 테이블을 유지할 때 추천 성능이 더욱 향상되어 나오는 결과를 확인하여, 제안된 구조의 추천 시스템 디자인의 효율성과 합리성을 확인할 수 있었다.
인터넷 발전이 가속화되고 SNS가 보급된 이후 과거와는 비교할 수 없을 정도로 큰 데이터 트래픽이 발생하고 있다. 기존의 DBMS는 이를 효과적으로 처리할 수 없었기 때문에 Hadoop과 같은 NoSQL이 탄생하였고, 최근 NoSQL 및 기존 SQL DBMS의 협업을 통해 유연하고 강력한 데이터 관리를 수행하는 연구가 진행되었다. 효율적인 질의 처리를 위한 대표적인 연구로 SQL 기반 분산 병렬 질의 처리 기법과 Hive등이 존재한다. 그러나 기존의 기법은 분산 병렬 환경을 고려하지 않아 SQL DBMS의 질의 결과를 효율적으로 Hive에 전송하지 못한다. 본 논문에서는 SQL DBMS에서 Hive로의 효율적인 SQL 데이터 이동을 위해 네트워크 비용을 최소화하는 기법을 제안하고, 제안하는 기법의 우수성을 제시한다.
시계열 데이터 처리를 위해 방대한 양의 데이터를 스토리지에서 빠르게 읽어와 처리하려는 움직임이 많아지고 있다. 이를 위해 스토리지의 read latency 를 개선하기 위한 여러 기법들이 제안되었지만, 이 기법들은 분산 노드의 스토리지 자원을 충분히 활용하지 못한다는 한계가 있다. 따라서 우리는 시계열 데이터를 실시간으로 처리하기 위해 스토리지에 병렬적으로 접근하여 read latency 를 개선하는 기법을 제안한다. 제안된 기법은 분산 환경에서 스토리지에 병렬적으로 접근하여, 각 노드에서 부분적으로 데이터를 읽어와 전체 데이터를 읽어오는 지연시간을 줄인다. 우리는 제안된 기법을 여러 노드로 구성된 분산 환경에서 구현하였다. 제안된 기법을 적용한 결과, 전체 데이터를 읽어오는 read latency 가 기존 기법보다 28.04% 줄어든 것을 확인하였다.
대용량 데이터의 효율적 분석을 위해 데이터 뷰브가 연구되었으며, 데이터 큐브 계산의 고비용 문제점을 해결하기 위하여 큐브의 일부 영역만을 계산하는 빙산 큐브가 등장하였다. 빙산 큐브는 저장 공간의 감소, 집중적인 분석 등의 장점이 있으나, 여전히 많은 계산과 저장 공간을 필요로 하는 단점이 있다. 본 논문에서는 이러한 문제점을 해결하는 실용적인 방법으로 대용량 문제를 분산하여 처리하는 분산 병렬 컴퓨팅 기술인 맵리듀스(MapReduce) 프레임워크를 사용하여 분산 병렬 빙산 큐브인 MR-Naive와 MR-BUC 알고리즘을 제안한다. 실험을 통해 맵리듀스 프레임워크를 통한 빙사 큐브 계산이 효율적으로 분산 병렬 처리 됨을 확인하였다.
고속 네트워크로 연결된 대형 병렬 컴퓨터 및 클러스터 시스템의 사용이 증가되면서, 대용량 스토리지의 효율적인 활용을 위한 분산 및 병렬 파일 시스템에 대한 관심이 증가하고 있다. 특히 다수의 컴퓨터에 장착된 디스크 또는 스토리지를 네트워크로 연결하여 하나의 논리적이 파일 시스템으로 구성하는 분산 및 병렬 파일 시스템은 유휴 자원의 활용, bandwidth 및 throughput의 증대라는 장점으로 많은 연구가 진행 중이다. 본 논문에서는 대표적인 분산 및 병렬 파일 시스템을 대상으로 소규모 클러스터 시스템에서 성능 및 특징을 비교, 분석하였다.
빅데이터를 활용한 기계학습 모델을 개발하기 위해서는 빅데이터 처리를 위한 플랫폼과 딥러닝 프레임 워크 등 고급 분석을 수행할 수 있는 도구의 활용이 동시에 요구된다. 그러나 빅데이터 플랫폼과 딥러닝 프레임워크를 자유롭게 활용하기 위해서는 상당한 수준의 기술적 지식과 경험이 필요하다. 또한 빅데이터를 이용한 딥러닝 모델을 개발할 경우 분산처리와 병렬처리에 대한 지식과 추가적인 작업이 요구된다. 본 연구에서는 빅데이터를 활용한 기계학습 모형을 자유롭게 개발 및 공유하고 분산 딥러닝을 위한 시스템적 지원을 통해 분야별로 딥러닝 모형을 개발하는 응용 연구자들이 활용할 수 있는 플랫폼을 제시하였다. 본 연구를 통해 다양한 분야의 연구자들이 자신의 데이터를 이용하여 모형을 개발할 경우 분산처리와 병렬처리를 위한 기술적 제약을 극복하고 보다 빠르고 효율적인 방법으로 모형을 개발하고 현업에 활용할 수 있을 것으로 기대한다.
본 논문에서는 시뮬레이션 속도 향상을 위하여 VHDL(Very high speed integrated circuit Hardware Description Language)로 기술된 디지털 회로 시뮬레이션을 위한 병렬 분산 VHDL 시뮬레이터(Parallel Distributed VHDL Simulator : PDVS)를 개발한다. 개발된 프로그램을 대규모 병렬 프로그래밍 환경에서도 수행될 수 있도록 하기 위해서 표준 통신 라이브러리인 MPI(Message Passing Interface)를 이용하여 구현된다. PDVS 의 전체적인 시스템구성도, PDVS 에 사용된 시뮬레이션 프로토콜, 전역가상시간 계산 메카니즘 및 논리적 프로세스의 내부 구성요소들간의 관계와 PDVS의 제어 흐름도를 제시한다. 그리고 본 연구에서는 병렬 분산 시뮬레이션의 병렬성 정도를 분석하기 위하여 디지털 회로의 크기 변화와 처리되는 사건수(grain size)의 변화에 따른 성능 결과를 제시한다. 이 연구에서 4배크기의 디지털 회로를 적용한 경우는 프로세서를 12개 사용할 때에 8배의 속도향상을 얻었다. 그리고 처리되는 사건의 수가 200인 경우는 프로세서를 32개 사용할 때에 12배의 속도향상을 얻었다. 또한 동일한 방법을 SGI Origin 2000, Cray T3e 및 IBM SP2에 적용함으로서 그 성능의 간접적인 비교결과도 제시한다.
광선추적기법은 사진과 같은 고해상도의 영상을 만들어내는 렌더링 기법중의 하나이다. 이 기법은 이미지를 합성하는데 많은 양의 계산 시간을 필요로 한다. 병렬처리 기법이 광선추적에 계산양의 처리 기간을 감소하기 위하여 사용될 수 있다. 본 논문에서는 병렬 광선추적 기법을 MPI(Message Passing Interface)를 사용하여 IBM Supercomputer 상에서 노드의 개수의 증가에 따른 속도 향상과 노드간에 전달되는 메시지의 크기에 따른 성능 향상을 실험하였다. 본 논문에서 실험한 병렬 광선 추적 기법으로 IBM SP 시스템 상에서 다양한 영상을 생성하였다. 영상은 분할가능하고 노드에 분배할 수 있기 때문에 병렬화 범주에 들 수 있으며 부하균형을 맞출 수 있다. 실험에서 프로세서수의 증가에 따른 이상적인 속도향상률(Speed-up rate)을 15개의 프로세서를 사용하여 얻을 수 있었다. 광선을 추적하여 영상을 합성해 낼 때 표현하고자 하는 영상이 단순한 객체로 이루어져 있다면 각 노드에 분산해줘야 할 작업의 크기는 복잡한 객체들로 구성된 영상보다 클 때 더 놓은 성능을 나타내었다. 분산작업의 크기가 작아 상대적으로 통신횟수가 증가할 때 렌더링시 효율저하를 나타내었다.
네트워크 환경이 좋아지고 인터넷 사용이 급증함에 따라 이동 에이전트(Mobile Agent) 기술이 정보검색, 네트워크관리, 전자상거래, 병렬/분산처리 분야에 널리 활용되고 있다. 최근에 다수의 연구자들이 이동 에이전트를 기반으로 한 병렬/분산처리 개념을 연구하고 있다. SPMD(Single Program Multiple Data)는 하나의 프로그램이 병렬환경에 참여하는 모든 컴퓨터에 전송되어 다른 자료를 사용하여 작업을 수행하는 병렬처리 방법이다. 따라서 하나의 프로그램을 모든 컴퓨터에 빠르게 전송하는 것은 전체 수행시간을 줄이기 위한 주요한 요소 중의 하나이다. 본 논문에서는 이동 에이전트 시스템으로 구성된 병렬환경에서 SPMD의 병렬처리를 효율적으로 수행하기 위해, 바이노미얼 트리를 이용하여 하나의 이동 에이전트 코드를 모든 컴퓨터에 빠르게 전송하는 새로운 방법을 제안한다. 제안된 방법은 IBM's Aglets에서 실험적 평가를 통하여 다른 방법과 비교되었으며 다른 방법에 비해서 상당히 좋은 성능을 보였다. 또한 본 문에서는 바이노미얼 트리에서 에이전트 전송 중에 발생될 수 있는 결함허용에 관한 문제를 다룬다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.