• Title/Summary/Keyword: 별 관측

Search Result 2,077, Processing Time 0.039 seconds

Comparative Study of KOMPSAT-1 EOC Images and SSM/I NASA Team Sea Ice Concentration of the Arctic (북극의 KOMPSAT-1 EOC 영상과 SSM/I NASA Team 해빙 면적비의 비교 연구)

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.507-520
    • /
    • 2007
  • Satellite passive microwave(PM) sensors have been observing polar sea ice concentration(SIC), ice temperature, and snow depth since 1970s. Among them SIC is playing an important role in the various studies as it is considered the first factor for the monitoring of global climate and environment changes. Verification and correction of PM SIC is essential for this purpose. In this study, we calculated SIC from KOMPSAT-1 EOC images obtained from Arctic sea ice edges from July to August 2005 and compared with SSM/I SIC calculated from NASA Team(NT) algorithm. When we have no consideration of sea ice types, EOC and SSM/I NT SIC showed low correlation coefficient of 0.574. This is because there are differences in spatial resolution and observing time between two sensors, and the temporal and spatial variation of sea ice was high in summer Arctic ice edge. For the verification of SSM/I NT SIC according to sea ice types, we divided sea ice into land-fast ice, pack ice, and drift ice from EOC images, and compared them with SSM/I NT SIC corresponding to each ice type. The concentration of land-fast ice between EOC and SSM/I SIC were calculated very similarly to each other with the mean difference of 0.38%. This is because the temporal and spatial variation of land-fast ice is small, and the snow condition on the ice surface is relatively dry. In case of pack ice, there were lots of ice ridge and new ice that are known to be underestimated by NT algorithm. SSM/I NT SIC were lower than EOC SIC by 19.63% in average. In drift ice, SSM/I NT SIC showed 20.17% higher than EOC SIC in average. The sea ice with high concentration could be included inside the wide IFOV of SSM/I because the drift ice was located near the edge of pack ice. It is also suggested that SSM/I NT SIC overestimated the drift ice covered by wet snow.

Estimation of Paddy Rice Growth Parameters Using L, C, X-bands Polarimetric Scatterometer (L, C, X-밴드 다편파 레이더 산란계를 이용한 논 벼 생육인자 추정)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.1
    • /
    • pp.31-44
    • /
    • 2009
  • The objective of this study was to measure backscattering coefficients of paddy rice using a L-, C-, and X-band scatterometer system with full polarization and various angles during the rice growth period and to relate backscattering coefficients to rice growth parameters. Radar backscattering measurements of paddy rice field using multifrequency (L, C, and X) and full polarization were conducted at an experimental field located in National Academy of Agricultural Science (NAAS), Suwon, Korea. The scatterometer system consists of dual-polarimetric square horn antennas, HP8720D vector network analyzer ($20\;MHz{\sim}20\;GHz$), RF cables, and a personal computer that controls frequency, polarization and data storage. The backscattering coefficients were calculated by applying radar equation for the measured at incidence angles between $20^{\circ}$ and $60^{\circ}$ with $5^{\circ}$ interval for four polarization (HH, VV, HV, VH), respectively. We measured the temporal variations of backscattering coefficients of the rice crop at L-, C-, X-band during a rice growth period. In three bands, VV-polarized backscattering coefficients were higher than hh-polarized backscattering coefficients during rooting stage (mid-June) and HH-polarized backscattering coefficients were higher than VV-, HV/VH-polarized backscattering coefficients after panicle initiation stage (mid-July). Cross polarized backscattering coefficients in X-band increased towards the heading stage (mid-Aug) and thereafter saturated, again increased near the harvesting season. Backscattering coefficients of range at X-band were lower than that of L-, C-band. HH-, VV-polarized ${\sigma}^{\circ}$ steadily increased toward panicle initiation stage and thereafter decreased, and again increased near the harvesting season. We plotted the relationship between backscattering coefficients with L-, C-, X-band and rice growth parameters. Biomass was correlated with L-band hh-polarization at a large incident angle. LAI (Leaf Area Index) was highly correlated with C-band HH- and cross-polarizations. Grain weight was correlated with backscattering coefficients of X-band VV-polarization at a large incidence angle. X-band was sensitive to grain maturity during the post heading stage.

Influences of Chinese Cabbage Growth and Soil Salinity to Alternative Irrigation Waters (대체관개 용수에 의한 배추생육 및 토양 염류도에 미치는 영향)

  • Shin, Joung-Du;Park, Sang-Won;Kim, Won-Il;Lee, Jong-Sik;Yun, Sun-Gang;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • Objective of this experiment was to investigate the growth effects of Chinese cabbage and soil salinity to alternative irrigation waters for drought periods. The treatments were consisted of the discharge water from industrial wastewater treatment plant (DIWT), the discharge water from municipal wastewater treatment plant (DMWT) and ground water as the control. For the chemical compositions of alternative water, it appeared that concentrations of the $Ni^+$ and SAR values in DIWT were over the reuse criteria of other countries for irrigation, but CODcr concentration in DMWT was higher than the reuse criteria for agricultural irrigation. According to classification of water by $EC_i$ value, DIWT and DMWT are ranged from 0.7 to $2.0dS\;m^{-1}$, slight salinity. Average harvest indexes were 0.64 for DIWT and 0.63 for DMWT as compared to 0.61 of the control regardless of irrigation periods. SAR value in soil was increased with prolonging the irrigation periods at head forming stage, but not much difference except for 30 days of irrigation period at harvesting time for DIWT. However, it was not much difference along with irrigation periods through the growth stages for DMWT as compared with the groundwater. At harvesting time, average $EC_e$ for the soil irrigated with alternative agricultural waters was $0.017dS\;m^{-1}$ for its DIMT and $0.036dS\;m^{-1}$ for its DMWT as compared to $0.013dS\;m^{-1}$ of its groundwater as the control. For $NH_4-N$ concentrations, it observed that there were no differences among the treatments with different irrigation periods at head forming stage in soil after irrigation. Also, $NO_3-N$ concentration in soil was increased up to 20 days after irrigation, and then decreased at 30 days after irrigation with DMWT at head forming stage. The $Ni^+$ concentration in upper layer soil (0-15 cm) irrigated with DIWT was increased with prolonging the irrigation period at head forming stage, but it was dramatically decreased and almost constant in all the treatments at harvesting time. Therefore, it might be concluded that there was potentially safe to irrigate the discharge water from municipal wastewater treatment plant for 20 days after transplanting to drought periods with cultivating the Chinese cabbage.

Characteristics of Beach Change and Sediment Transport by Field Survey in Sinji-Myeongsasimni Beach (신지명사십리 해수욕장에서 현장조사에 의한 해빈변화와 퇴적물이동 특성)

  • Jeong, Seung Myong;Park, Il Heum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.594-604
    • /
    • 2021
  • To evaluate the causes of beach erosion in Sinji-Myeongsasimni Beach, external forces, such as tides, tidal currents, and waves, were observed seasonally from March 2019 to March 2020, and the surface sediments were analyzed for this period. In addition, the shoreline positions and beach elevations were regularly surveyed with a VRS GPS and fixed-wing drone. From these field data, the speed of the tidal currents was noted to be insufficient, but the waves were observed to af ect the deformation of the beach. As the beach is open to the southern direction, waves of heights over 1 m were received in the S-SE direction during the spring, summer, and fall seasons. Large waves with heights over 2 m were observed during typhoons in summer and fall. Because of the absence of typhoons for the previous two years from July 2018, the beach area over datum level (DL) as of July 2018 was greater by 30,138m2 compared with that of March 2019, and the beach area as of March 2020 decreased by 61,210m2 compared with that of March 2019 because of four typhoon attacks after July 2018. The beach volume as of March 2019 decreased by 5.4% compared with that of July 2018 owing to two typhoons, and the beach volume as of September 2019 decreased by 7.3% because of two typhoons during the observation year. However, the volume recovered slightly by about 3% during fall and winter, when there were no high waves. According to the sediment transport vectors by GSTA, the sediments were weakly influxed from small streams located at the center of the beach; the movement vectors were not noticeable at the west beach site, but the westward sediment transport under the water and seaward vectors from the foreshore beach were prominently observed at the east beach site. These patterns of westward sediment vectors could be explained by the angle between the annual mean incident wave direction and beach opening direction. This angle was inclined 24° counterclockwise with the west-east direction. Therefore, the westward wave-induced currents developed strongly during the large-wave seasons. Hence, the sand content is high in the west-side beach but the east-side beach has been eroded seriously, where the pebbles are exposed and sand dune has decreased because of the lack of sand sources except for the soiled dunes. Therefore, it is proposed that efforts for creating new sediment sources, such as beach nourishment and reducing wave heights via submerged breakwaters, be undertaken for the eastside of the beach.

Spatial Downscaling of Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index Using GOCI Satellite Image and Machine Learning Technique (GOCI 위성영상과 기계학습 기법을 이용한 Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index의 공간 상세화)

  • Sung, Taejun;Kim, Young Jun;Choi, Hyunyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.959-974
    • /
    • 2021
  • Forel-Ule Index (FUI) is an index which classifies the colors of inland and seawater exist in nature into 21 gradesranging from indigo blue to cola brown. FUI has been analyzed in connection with the eutrophication, water quality, and light characteristics of water systems in many studies, and the possibility as a new water quality index which simultaneously contains optical information of water quality parameters has been suggested. In thisstudy, Ocean Colour-Climate Change Initiative (OC-CCI) based 4 km FUI was spatially downscaled to the resolution of 500 m using the Geostationary Ocean Color Imager (GOCI) data and Random Forest (RF) machine learning. Then, the RF-derived FUI was examined in terms of its correlation with various water quality parameters measured in coastal areas and its spatial distribution and seasonal characteristics. The results showed that the RF-derived FUI resulted in higher accuracy (Coefficient of Determination (R2)=0.81, Root Mean Square Error (RMSE)=0.7784) than GOCI-derived FUI estimated by Pitarch's OC-CCI FUI algorithm (R2=0.72, RMSE=0.9708). RF-derived FUI showed a high correlation with five water quality parameters including Total Nitrogen, Total Phosphorus, Chlorophyll-a, Total Suspended Solids, Transparency with the correlation coefficients of 0.87, 0.88, 0.97, 0.65, and -0.98, respectively. The temporal pattern of the RF-derived FUI well reflected the physical relationship with various water quality parameters with a strong seasonality. The research findingssuggested the potential of the high resolution FUI in coastal water quality management in the Korean Peninsula.

A Comparative Evaluation of Multiple Meteorological Datasets for the Rice Yield Prediction at the County Level in South Korea (우리나라 시군단위 벼 수확량 예측을 위한 다종 기상자료의 비교평가)

  • Cho, Subin;Youn, Youjeong;Kim, Seoyeon;Jeong, Yemin;Kim, Gunah;Kang, Jonggu;Kim, Kwangjin;Cho, Jaeil;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.337-357
    • /
    • 2021
  • Because the growth of paddy rice is affected by meteorological factors, the selection of appropriate meteorological variables is essential to build a rice yield prediction model. This paper examines the suitability of multiple meteorological datasets for the rice yield modeling in South Korea, 1996-2019, and a hindcast experiment for rice yield using a machine learning method by considering the nonlinear relationships between meteorological variables and the rice yield. In addition to the ASOS in-situ observations, we used CRU-JRA ver. 2.1 and ERA5 reanalysis. From the multiple meteorological datasets, we extracted the four common variables (air temperature, relative humidity, solar radiation, and precipitation) and analyzed the characteristics of each data and the associations with rice yields. CRU-JRA ver. 2.1 showed an overall agreement with the other datasets. While relative humidity had a rare relationship with rice yields, solar radiation showed a somewhat high correlation with rice yields. Using the air temperature, solar radiation, and precipitation of July, August, and September, we built a random forest model for the hindcast experiments of rice yields. The model with CRU-JRA ver. 2.1 showed the best performance with a correlation coefficient of 0.772. The solar radiation in the prediction model had the most significant importance among the variables, which is in accordance with the generic agricultural knowledge. This paper has an implication for selecting from multiple meteorological datasets for rice yield modeling.

Phytohydrographic Plankton Studies during the First Half of the 20th Century in Korean Neritic Seas (20세기 전반 한국 근해역 플랑크톤의 식물수문학적 연구)

  • PARK, JONG WOO;KIM, HYUNG SEOP;YIH, WONHO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.3
    • /
    • pp.483-494
    • /
    • 2019
  • From the cosmopolitan superiority of the as the first world map completed in 1402 with surprisingly detailed images and contents on the Africa Continent it is reasonable to think that the Koreans in early fifteen century were already with highly up-to-date perspectives on the universe and world history and cultures. However, some 490 year later the first phytohydrographic plankton investigation in the neritic seas of Korea was performed by a Japanese company with sampling points covering from Tokyo Bay through Jeju neritic waters to Shanghai estuary, which was in turn preceded by the first oceanographic investigation other than the simple mapping Koreans seas by using two French sailboats. The first phytohydrographic plankton investigation in Korean seas were behind the world first oceanic plankton exploration, the German Plankton Expedition, by 25 years. Starting from the oceanographic investigation including phytohydrographic samplings in the whole Yellow Sea in 1915 the full-scale phytohydrographic plankton studies were tried in Korean seas which is well represented by the 1921 oceanographic investigation on the whole East Sea with 80 sampling stations. In 1932 two separate oceanographic investigations followed, one in the East Sea where 78 stations from Busan to southern Sakhalin Island were simultaneously visited by 50 research vessels for the physical, chemical, and biological oceanographic studies, and the other one in southern coast and western East Sea of Korea where ocean current observation as well as plankton sampling were made in 120 stations to understand the relationship between the ocean current and plankton distribution in the region. In 1933-1934 more intensified investigations on phytohydrography were carried out particularly in the East Sea as an integral part of the basic marine ecosystem studies for the Myeong-Tae (Alaska Pollock) resources estimation. Scientists' attitude for the marine investigation and research activities seemed to be almost unchanging even to the year 1943, which could be reflected by the fact that publication of the results from the investigations performed in 1945 were finally done in 1967 at Tokyo. Some 70 years later from the mid-twenty century we might be standing on the turning-point of "need to be prepared" for the new era of changing paradigm by reviewing, archiving, and analyzing the prior information big data from the previous ocean observation and biohydrographic investigations. At the same time each professional societies for the above mentioned sciences might trigger a continuous project to reorganize and update the records on related bibliography and its history every 30 years.

On Utilization of Inactive Storage in Dam during Drought Period (가뭄 극복을 위한 댐의 비활용용량 활용 방안 연구)

  • Joo, Hongjun;Kim, Deokhwan;Kim, Jungwook;Bae, Younghye;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.353-362
    • /
    • 2018
  • The purpose of this study is to suggest a structure plan for improving the utilization of inactive storage in the dam for overcoming the drought. Inactive storage in the dam is composed of the emergency storage and dead storage. The emergency storage can be used for the case of emergency such as drought. But, in general, the dead storage for sedimentation is not used even for the emergency. Therefore, this study considers the part of dead storage that the sedimentation is not progressed yet can be used during the severe drought period and is called "drought storage in a dam". The accurate Sediment Level(SL) analysis for the computation of the drought storage should be performed and so the present and future SL in the dam reservoir is estimated using SED-2D linked with RMA-2 model of SMS. After the consideration of additionally available storage capacity based on the estimated SL, the drought storage is finally determined. Present data based on historical data, future predicted future climate factors by Representative Concentrarion Pathways(RCP) 8.5 scenario. Then, using the TANK model, dam inflows were determined, and future period such as SL and drought storage were suggested. As the results, we have found that the available drought storage will be reduced in the future when we compare the present drought storage with the future one. This is due to a increase variability of climate change. Therefore, we should take the necessary study for the increase of available drought storage in the future.

Characteristics of Indoor Particulate Matter Concentrations by Size at an Apartment House During Dusty-Day (황사 발생시 아파트 실내에서 미세먼지 크기별 농도 특성)

  • Joo, Sang-Woo;Ji, Jun-Ho
    • Particle and aerosol research
    • /
    • v.15 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • It is recommended for the public to stay at home and to close the doors and windows when a high-particulate-matter environment such as a yellow sand event occurs outside. However, there are lack of empirical studies describing how much outdoor PM infiltrates into a closed house and how much indoor PM an inhabitant is exposed to during the period. In this study, the $PM_{10}$ and $PM_{2.5}$ were measured at the kitchen in an apartment house by an optical particle counter for 3 days including a yellow sand event. The outdoor PMs and the outdoor wind speeds were referred from surrounding weather stations. We analyzed the penetration of $PM_{10-2.5}$ and $PM_{2.5}$ at the test house against the outdoor wind speed supposed corresponding to the change of air exchange rate. In addition, the effect of an indoor activity on change in the indoor PM was investigated. In result, the indoor $PM_{10-2.5}$ was very low even a yellow sand event occurred outside; rather, a contribution of indoor activities to increase in $PM_{10-2.5}$ was higher. In contrast, the indoor $PM_{2.5}$ fluctuated following the outdoor $PM_{2.5}$ trend at high wind speeds or remained almost constant at low wind speed.

Frequency analysis for annual maximum of daily snow accumulations using conditional joint probability distribution (적설 자료의 빈도해석을 위한 확률밀도함수 개선 연구)

  • Park, Heeseong;Chung, Gunhui
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.627-635
    • /
    • 2019
  • In Korea, snow damage has been happened in the region with no snowfalls in history. Also, casual damage was caused by heavy snow. Therefore, policy about the Natural Disaster Reduction Comprehensive Plan has been changed to include the mitigation measures of snow damage. However, since heavy snow damage was not frequent, studies on snowfall have not been conducted in different points. The characteristics of snow data commonly are not same to the rainfall data. For example, some parts of the southern coastal areas are snowless during the year, so there is often no values or zero values among the annual maximum daily snow accumulation. The characteristics of this type of data is similar to the censored data. Indeed, Busan observation sites have more than 36% of no data or zero data. Despite of the different characteristics, the frequency analysis for snow data has been implemented according to the procedures for rainfall data. The frequency analysis could be implemented in both way to include the zero data or exclude the zero data. The fitness of both results would not be high enough to represent the real data shape. Therefore, in this study, a methodology for selecting a probability density function was suggested considering the characteristics of snow data in Korea. A method to select probability density function using conditional joint probability distribution was proposed. As a result, fitness from the proposed method was higher than the conventional methods. This shows that the conventional methods (includes 0 or excludes 0) overestimated snow depth. The results of this study can affect the design standards of buildings and also contribute to the establishment of measures to reduce snow damage.