• 제목/요약/키워드: 변환사전

검색결과 351건 처리시간 0.03초

3D Magnetic Ball을 이용한 필기체 인식 향상 Coding System (Improved Pattern Recoginition Coding System of a Handwriting Character with 3D)

  • 심규승;이재홍;이병엽
    • 한국콘텐츠학회논문지
    • /
    • 제13권9호
    • /
    • pp.10-19
    • /
    • 2013
  • 본 논문에서는 그래프 패턴 인식을 신속히 처리하기 위한 새로운 자성 센서의 개발과 인식 시스템을 제안하고자 하였다. 그래픽을 입력받아 세션화와 균형화를 수행하는데 있어서 특징점의 사전 처리를 선결 수행함으로써 인식 속도를 증강하고 선처리된 특징점을 이용하여 끝점, 굴곡점, 분기점의 특징점을 별도로 추출하지 않는 방법으로 조사하여 모음이나 자음의 부분패턴의 그래프 사전을 비교하는 간단한 구조해석과 인식을 도모하였다. 본 논문의 성능 비교를 위하여 사용자의 필기체를 사전에 등록 인식하고 입력 필기체를 비교 인식하여 Unicode로 변환시켜 비교한 결과 70%의 초기 인식률에서 누적 인공학습 지능 처리 결과 95%의 이상의 인식률을 보여주고 있다.

AutoEncoder 기반 역난독화 사전학습 및 전이학습을 통한 악성코드 탐지 방법론 (Malware detection methodology through on pre-training and transfer learning for AutoEncoder based deobfuscation)

  • 장재석;구본재;엄성준;한지형
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.905-907
    • /
    • 2022
  • 악성코드를 분석하는 기존 기법인 정적분석은 빠르고 효율적으로 악성코드를 탐지할 수 있지만 난독화된 파일에 취약한 반면,, 동적분석은 난독화된 파일에 적합하지만 느리고 비용이 많이 든다는 단점을 가진다. 본 연구에서는 두 분석 기법의 단점을 해결하기 위해 딥러닝 모델을 활용한 난독화에 강한 정적분석 모델을 제안하였다. 본 연구에서 제안한 방법은 원본 코드 및 난독화된 파일을 grayscale 이미지로 변환하여 데이터셋을 구축하고 AutoEncoder 를 사전학습시켜 encoder 가 원본 파일과 난독화된 파일로부터 원본 파일의 특징을 추출할 수 있도록 한 이후, encoder 의 output 을 fully connected layer 의 입력으로 넣고 전이학습시켜 악성코드를 탐지하도록 하였다. 본 연구에서는 제안한 방법론은 난독화된 파일에서 악성코드를 탐지하는 성능을 F1 score 기준 14.17% 포인트 향상시켰고, 난독화된 파일과 원본 파일을 전체를 합친 데이터셋에서도 악성코드 탐지 성능을 F1 score 기준 7.22% 포인트 향상시켰다.

사전 학습된 딥러닝 모델의 Mel-Spectrogram 기반 기침 탐지를 위한 Attention 기법에 따른 성능 분석 (Attention Modules for Improving Cough Detection Performance based on Mel-Spectrogram)

  • 박창준;김인기;김범준;전영훈;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.43-46
    • /
    • 2023
  • 호흡기 관련 전염병의 주된 증상인 기침은 공기 중에 감염된 병원균을 퍼트리며 비감염자가 해당 병원균에 노출된 경우 높은 확률로 해당 전염병에 감염될 위험이 있다. 또한 사람들이 많이 모이는 공공장소 및 실내 공간에서의 기침 탐지 및 조치는 전염병의 대규모 유행을 예방할 수 있는 효율적인 방법이다. 따라서 본 논문에서는 탐지해야 하는 기침 소리 및 일상생활 속 발생할 수 있는 기침과 유사한 배경 소리 들을 Mel-Spectrogram으로 변환한 후 시각화된 특징을 CNN 모델에 학습시켜 기침 탐지를 진행하며, 일반적으로 사용되는 사전 학습된 CNN 모델에 제안된 Attention 모듈의 적용이 기침 탐지 성능 향상에 도움이 됨을 입증하였다.

  • PDF

질의어 자동수정을 이용한 메타시소러스 검색 방법 (The Method of Searching Metathesaurus, Using Automatic Modified a Query)

  • 김종광;하원식;김태용;류중경;이정현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
    • /
    • pp.454-456
    • /
    • 2003
  • UMLS(2003AA edition 기준)의 메타시소러스는 다국어를 지원하며 875.233개의 개 (concept)과 2,146,897개의 개념명(concept name)을 포함한다. 현재 UMLS 메타시소러스 검색을 제공하는 PubMed나 NLM에서는 UMLS에서는 개념명에 존재하지 않는 잘못된 질의나, 잘못된 구문 또는 개념명의 일부를 이용한 검색이 불가능하다. 이는 사용자가 UMLS에서 정보를 얻기 위해서는 정확한 의학용어를 숙지해야 되며. UMLS 메타시소러스의 데이터가 잘못 되었을 경우 정보를 얻을 수 없다. 본 연구에서는 이러한 문제점을 보완하기 위해서 자연어처리에서 연구되고 있는 문자열 간의 유사도 측정방식을 적용하여 잘못된 질의어에 대한 자동수정 기능을 이용한 메타시소러스 검색방법을 제안한다. 제안한 방법에서는 질의어를 자동수정하기 위하여 철자사전을 자동으로 추출하고 문자열 비교알고리즘을 도입하여 질의어와 철자사전간의 용어의 유사도를 측정한다. 유사도에 의하여 얻어진 용어를 메타시소러스의 형식에 맞게 변환하여 질의에 대한 최적의 결과를 얻을 수 있도록 한다. 제안된 방법의 성능을 평가하기 위해서 최근(2003년 8월) bi-gram 방식을 도입한 NLM에서의 시스템과 비교 평가한다.

  • PDF

비음수 행렬 인수분해를 이용한 질의 기반의 문서 요약 (Query-Based Summarization using Non-negative Matrix Factorization)

  • 박선;이주홍;안찬민;박태수;김덕환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (A)
    • /
    • pp.394-396
    • /
    • 2006
  • 기존 질의기반의 문서요약은 질의와 문서간의 사전 학습으로 요약의 질을 높이거나, 문서의 고유 구조(inherent structure)를 반영하여 요약의 정확도를 높이기 위하여 문서를 그래프로 변환한다. 본 논문은 비음수 행렬 인수분해 (NMF, Non-negative Matrix Factorization)를 이용하여 질의 기반의 문서를 요약하는 새로운 방법을 제안하였다. 제안된 방법은 질의와 문서간에 사전학습이 필요 없다. 또한 문서를 그래프로 변형시키는 복잡한 처리 없이 NMF에 의해 얻어진 의미 특징(semantic feature)과 의미 변수(semantic variable)로 문서의 고유 구조를 반영하여 요약의 정확도를 높일 수 있다. 마지막으로 단순한 방법으로 문장을 쉽게 요약 할 수 있다.

  • PDF

중한 기계 번역 시스템을 위한 형태소 분석기 (A Morph Analyzer For MATES/CK)

  • 강원석;김지현;송영미;송희정;황금하;채영숙;최기선
    • 한국인지과학회:학술대회논문집
    • /
    • 한국인지과학회 2000년도 한글 및 한국어 정보처리
    • /
    • pp.331-336
    • /
    • 2000
  • MATES/CK는 기계번역 시스템에서 전통적으로 사용하고 있는 세 단계(분석/변환/생성)에 의해서 중한 번역을 수행하는 시스템이다. MATES/CK는 시스템 성능을 높히기 위해 패턴 기반과 통계적 정보를 이용한다. 태거(Tagger)는 중국어 단어 분리를 최장일치법으로 수행하기 때문에 일부 단어에 대해 오류를 범하게 되고 품사(POS : Part Of Speech) 태킹 시 확률적 정보만 이용하여 특정 단어가 다 품사인 경우 그 단어에 대해 특정 품사만 태깅되는 문제점이 발생한다. 또한 중국어 및 외국어 인명 및 지명에 대한 미등록들에 대해서도 올바른 결과를 도출하지 못한다. 사전에 있어서 텍스트 기반으로 존재하여 이를 관리하기에 힘이 든다. 본 논문에서는 단어 분리 오류 및 품사 태깅 오류를 해결하기 위해 중국어 태킹 제약 규칙을 적용하는 방법을 제시하고 중국어 및 외국어 인명/지명에 대한 미등록어 처리방법을 제시한다. 또한 중국어 사전 관리에 대해 알아본다.

  • PDF

띄어쓰기 및 철자 오류 동시교정을 위한 통계적 모델 (A joint statistical model for word spacing and spelling error correction)

  • 노형종;차정원;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2006년도 제18회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.25-31
    • /
    • 2006
  • 본 논문에서는 띄어쓰기 오류와 철자 오류를 동시에 교정 가능한 전처리기를 제안한다. 제시된 알고리즘은 기존의 전처리기 알고리즘이 각 오류를 따로 해결하는 데에서 오는 한계를 극복하고, 기존의 noisy-channel model을 확장하여 대화체의 띄어쓰기 오류와 철자오류를 동시에 효과적으로 교정할 수 있다. N-gram과 자소변환확률 등의 통계적 방법과 어절변환패턴 사전을 이용하여 최대한 사전을 적게 이용하면서도 효과적으로 교정 후보들을 생성할 수 있다. 실험을 통해 현재 단계에서는 만족할 만한 성능을 얻지는 못하였지만 오류 분석을 통하여 이와 같은 방법론이 실제로 효용성이 있음을 알 수 있었고 앞으로 더 많은 개선을 통해 일상적인 대화체 문장에 대해서 효과적인 전처리기로서 기능할 수 있을 것으로 기대 된다.

  • PDF

User Interface 기반 스크립트 설계를 통한 대화형 에이전트의 지식 표현 (Knowledge Representation of Conversational Agent using Script Design based on User Interface)

  • 김경민;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
    • /
    • pp.427-729
    • /
    • 2003
  • 인터넷의 사용이 보편화됨에 따라 빠르게 변화하는 사용자의 요구를 만족시킴과 동시에 편리하고 유용한 서비스를 제공하기 위하여 사용자와 자연스럽게 의사소통할 수 있는 대화형 에이전트의 연구가 활발히 진행되고 있다. 그러나 현재 상용되고 있는 대부분의 대화형 에이전트들은 도메인 제한적 정보만을 제공하는 경향이 있어 도메인 변경의 경우 스크립트에서부터 새롭게 설계해야 하는 이중 부담을 겪고 있다. 본 논문에서는 스크립트 설계자가 특별한 사전 지식 없이도 간단한 입력 절차만 거쳐 자동으로 스크립트를 재구성할 수 있는 스크립트 인터페이스 구현에 초점을 맞춘다. 이 때 자연어로 입력되는 사용자 질의의 다양한 어휘들을 자동으로 대표 언어로 변환시킬 수 있도록 온톨로지 개념을 도입하여 동의어 사전을 구축함으로써 시스템의 효율성을 극대화한다. 또한 질의에 대한 다양한 답변 생성을 가능하게 하며, 실제 의류 사이트를 안내하는 대화형 에이전트를 구현하여 적용해 봄으로써 그 가능성을 알아본다.

  • PDF

웨이브릿 변환과 모멘트를 이용한 문자인식에 관한 연구 (A Study on Character Recognition using Wavelet Transformation and Moment)

  • 조민환
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권10호
    • /
    • pp.49-57
    • /
    • 2010
  • 본 논문에서는 웨이브릿 변환을 이용한문자인식 방법 중 문자의 최소 단위인자음과 모음을 분리시켜 문자의 모멘트를 분석하여 산출되는 정보를 사전에 컴퓨터에 입력시켜 문서화된 수기 문자를 컴퓨터에 저장하고 인식시키는 방법에 접근 하였다. 연구는 획득한 문장 이미지에서 잡음을 없애고 줄 단위로 분리, 분리된 줄 단위 문장은 한 문자 단위로 다시 분리된 후 자음과 모음으로 분리 하였다. 분리된 자소는 CVIPtools를 사용하여 히스토그램 평활화와 침식 및 평균값 필터를 처리한 후 C++를 이용하여 세선화 처리하고 세선화된 자소는 팽창 및 크기 변환하여 모든 자소가 동일 굵기, 크기 이미지로 만들었다. 표준화 이미지는 이진화 이미지로 변환하여 3단계 웨이브릿 변환을 이용하여 데이터의 양을 1/64로 줄인 후 해밍거리를 조사하였다. 연구 결과 다양한 'ㄱ'상호간 및 'ㅅ'상호간의 일치도는 매우 높게 나타났고, 서로 상이한 'ㄱ'과 'ㅅ'을 비교 했을 때 상호간 일치도가 매우 낮게 나옴을 알 수 있었다. 이 연구 결과로 더 많은 수기 자소들에 대한 해밍거리조사가 이루어지면 각각의 자음과 모음의 모멘트 구분하여 수기 문자 인식에 중요한 정보를 알 수 있을 것으로 판단된다.

내부 그레디언트 정보를 이용한 일반화된 허프변환 (Generalized Hough Transform using Internal Gradient Information)

  • 장지영
    • 융합정보논문지
    • /
    • 제7권3호
    • /
    • pp.73-81
    • /
    • 2017
  • 일반화된 허프변환(GHough)은 임의의 2차원 모델 추출을 위해 사용되는 유용한 기법이다. 그러나 GHough는 모델의 회전과 축척 관련 사전 정보가 없을 경우 모든 경우의 수를 나열하는 변환 방식을 택하기 때문에 4차원 패러미터 배열이라는 방대한 메모리 사용이 불가피하며 실행시간 또한 오래 걸릴 수밖에 없다. 이를 개선하기 위해 제안된 몇몇 n-to-1 변환 방식 들은 4차원 대신 2차원 패러미터 배열 사용만으로도 임의의 모델 추출을 가능케 한 반면 2차원 패러미터 공간에 던져지는 무작위 투표 때문에 모델 추출 오류 가능성 또한 높다 하겠다. 본 논문은 이와 같은 2차원 패러미터 공간에 던져지는 무작위 투표를 감소시키기 위한 방안으로 모델 내부의 추가적인 그레디언트 정보 활용을 제안하며 모델 윤곽선 정보에 추가로 모델 내부 그레디언트 정보를 활용할 경우 2차원 패러미터 공간에 던져지는 무작위 투표수를 효과적으로 줄일 수 있으며 따라서 실행시간 또한 단축될 수 있음을 실험을 통해 입증한다.