• Title/Summary/Keyword: 변환기반 학습

Search Result 418, Processing Time 0.028 seconds

Expanding Korean/English Parallel Corpora using Back-translation for Neural Machine Translation (신경망 기반 기계 번역을 위한 역-번역을 이용한 한영 병렬 코퍼스 확장)

  • Xu, Guanghao;Ko, Youngjoong;Seo, Jungyun
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.470-473
    • /
    • 2018
  • 최근 제안된 순환 신경망 기반 Encoder-Decoder 모델은 기계번역에서 좋은 성능을 보인다. 하지만 이는 대량의 병렬 코퍼스를 전제로 하며 병렬 코퍼스가 소량일 경우 데이터 희소성 문제가 발생하며 번역의 품질은 다소 제한적이다. 본 논문에서는 기계번역의 이러한 문제를 해결하기 위하여 단일-언어(Monolingual) 데이터를 학습과정에 사용하였다. 즉, 역-번역(Back-translation)을 이용하여 단일-언어 데이터를 가상 병렬(Pseudo Parallel) 데이터로 변환하는 방식으로 기존 병렬 코퍼스를 확장하여 번역 모델을 학습시켰다. 역-번역 방법을 이용하여 영-한 번역 실험을 수행한 결과 +0.48 BLEU 점수의 성능 향상을 보였다.

  • PDF

Design and Implementation of Speech-Training System for Voice Disorders (발성장애아동을 위한 발성훈련시스템 설계 및 구현)

  • 정은순;김봉완;양옥렬;이용주
    • Journal of Internet Computing and Services
    • /
    • v.2 no.1
    • /
    • pp.97-106
    • /
    • 2001
  • In this paper, we design and implement complement based speech training system for voice disorder. The system consists of three level of training: precedent training, training for speech apprehension and training for speech enhancement. To analyze speech of voice disorder, we extracted speech features as loudness, amplitude, pitch using digital signal processing technique. Extracted features are converted to graphic interface for visual feedback of speech by the system.

  • PDF

Topic-Specific Mobile Web Content Adaptation through Learning (학습을 통한 주제기반 모바일 웹 콘텐츠 적응화)

  • Lee Eunshil;Kang Jinbeom;Yang Jaeyoung;Choi Chongmin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.682-684
    • /
    • 2005
  • 본 논문에서는 시각적 웹페이지 세그멘테이션 기법을 웹 콘텐츠 변환에 적용하고 이를 사용하여 이동기기에 적합한 개인화 기법을 제안한다. 웹페이지를 사람이 시각적으로 구분하는 것과 유사한 블록으로 나누고, 각 블록의 속성을 파악하여 불필요한 블록은 필터링한다. 그리고 실제 내용을 나타내는 블록의 주제를 추출하여 휴대장치에 제공하는 효율적인 콘텐츠 적응화 기법을 제시한다. 또한 개인화된 콘텐츠를 제공하기 위해 적응화 과정에서 학습을 기반으로 사용자가 선호하는 정보만을 제공할 수 있는 개인화 기법을 제시한다.

  • PDF

Study on Implementation of Restaurant Recommendation System based on Deep Learning-based Consumer Data (딥러닝 기반의 소비자 데이터를 응용한 외식업체 추천 시스템 구현에 관한 연구)

  • Kim, Hee-young;Jung, Sun-mi;Kim, Woo-suk;Ryu, Gi-hwan;Son, Hyeon-kon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.437-442
    • /
    • 2021
  • In this study, a recommendation algorithm was implemented by learning a deep learning-based classification model for consumer data. For this purpose, a meaningful result is presented as a result of learning using ResNet50, which is commonly used in classification tasks by converting user data into images.

WDENet: Wavelet-based Detail Enhanced Image Denoising Network (Wavelet 기반의 영상 디테일 향상 잡음 제거 네트워크)

  • Zheng, Jun;Wee, Seungwoo;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.176-179
    • /
    • 2021
  • 최근 딥 러닝 기법의 하나인 합성곱 신경망(Convolutional Neural Network, CNN)은 영상 잡음(Noise) 제거 분야에서 전통적인 기법보다 좋은 성능을 나타내고 있지만 학습하는 과정에서 영상 내 디테일한 부분이 손실될 수 있다. 본 논문에서는 웨이블릿 변환(Wavelet Transform)을 기반으로 영상 내 디테일 정보도 같이 학습하여 영상 디테일을 향상하는 잡음 제거 합성곱 신경망 네트워크를 제안한다. 제안하는 네트워크는 디테일 향상 서브 네트워크(Detail Enhancement Subnetwork)와 영상 잡음 추출 서브 네트워크(Noise Extraction Subnetwork)를 이용하게 된다. 실험을 통해 제안하는 방법은 기존 알고리듬보다 디테일 손실 문제를 효과적으로 해결할 수 있었고 객관적 품질 평가인 PSNR(Peak Signal-to-Noise Ratio)와 주관적 품질 비교에서 모두 우수한 결과가 나온 것을 확인하였다.

  • PDF

Deep Clustering Based on Vision Transformer(ViT) for Images (이미지에 대한 비전 트랜스포머(ViT) 기반 딥 클러스터링)

  • Hyesoo Shin;Sara Yu;Ki Yong Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.363-365
    • /
    • 2023
  • 본 논문에서는 어텐션(Attention) 메커니즘을 이미지 처리에 적용한 연구가 진행되면서 등장한 비전 트랜스포머 (Vision Transformer, ViT)의 한계를 극복하기 위해 ViT 기반의 딥 클러스터링(Deep Clustering) 기법을 제안한다. ViT는 완전히 트랜스포머(Transformer)만을 사용하여 입력 이미지의 패치(patch)들을 벡터로 변환하여 학습하는 모델로, 합성곱 신경망(Convolutional Neural Network, CNN)을 사용하지 않으므로 입력 이미지의 크기에 대한 제한이 없으며 높은 성능을 보인다. 그러나 작은 데이터셋에서는 학습이 어렵다는 단점이 있다. 제안하는 딥 클러스터링 기법은 처음에는 입력 이미지를 임베딩 모델에 통과시켜 임베딩 벡터를 추출하여 클러스터링을 수행한 뒤, 클러스터링 결과를 임베딩 벡터에 반영하도록 업데이트하여 클러스터링을 개선하고, 이를 반복하는 방식이다. 이를 통해 ViT 모델의 일반적인 패턴 파악 능력을 개선하고 더욱 정확한 클러스터링 결과를 얻을 수 있다는 것을 실험을 통해 확인하였다.

Classification of Radio Signals Using Wavelet Transform Based CNN (웨이블릿 변환 기반 CNN을 활용한 무선 신호 분류)

  • Song, Minsuk;Lim, Jaesung;Lee, Minwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1222-1230
    • /
    • 2022
  • As the number of signal sources with low detectability by using various modulation techniques increases, research to classify signal modulation methods is steadily progressing. Recently, a Convolutional Neural Network (CNN) deep learning technique using FFT as a preprocessing process has been proposed to improve the performance of received signal classification in signal interference or noise environments. However, due to the characteristics of the FFT in which the window is fixed, it is not possible to accurately classify the change over time of the detection signal. Therefore, in this paper, we propose a CNN model that has high resolution in the time domain and frequency domain and uses wavelet transform as a preprocessing process that can express various types of signals simultaneously in time and frequency domains. It has been demonstrated that the proposed wavelet transform method through simulation shows superior performance regardless of the SNR change in terms of accuracy and learning speed compared to the FFT transform method, and shows a greater difference, especially when the SNR is low.

Text Classification using Cloze Question based on KorBERT (KorBERT 기반 빈칸채우기 문제를 이용한 텍스트 분류)

  • Heo, Jeong;Lee, Hyung-Jik;Lim, Joon-Ho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.486-489
    • /
    • 2021
  • 본 논문에서는 KorBERT 한국어 언어모델에 기반하여 텍스트 분류문제를 빈칸채우기 문제로 변환하고 빈칸에 적합한 어휘를 예측하는 방식의 프롬프트기반 분류모델에 대해서 소개한다. [CLS] 토큰을 이용한 헤드기반 분류와 프롬프트기반 분류는 사전학습의 NSP모델과 MLM모델의 특성을 반영한 것으로, 텍스트의 의미/구조적 분석과 의미적 추론으로 구분되는 텍스트 분류 태스크에서의 성능을 비교 평가하였다. 의미/구조적 분석 실험을 위해 KLUE의 의미유사도와 토픽분류 데이터셋을 이용하였고, 의미적 추론 실험을 위해서 KLUE의 자연어추론 데이터셋을 이용하였다. 실험을 통해, MLM모델의 특성을 반영한 프롬프트기반 텍스트 분류에서는 의미유사도와 토픽분류 태스크에서 우수한 성능을 보였고, NSP모델의 특성을 반영한 헤드기반 텍스트 분류에서는 자연어추론 태스크에서 우수한 성능을 보였다.

  • PDF

Wavelet Mix Module: Preserving High-Frequency in Network using Wavelet Transform (웨이블릿 혼합 모듈: 웨이블릿 변환을 이용한 네트워크 내 고주파 성분 보존)

  • Kim, Min Woo;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.231-234
    • /
    • 2022
  • 본 논문에서는 '스케치로부터 RGB 이미지로의 변환'을 수행하는 웨이블릿 기반의 네트웍에서 생성된 이미지 품질을 높이기 위해, 네트워크가 저주파수에 편향되어 학습이 되는 것을 완화하고자 Wavelet Mix Module(WMM)을 제안하였다. WMM 은 UNet 구조의 skip-connection 과정에 적용되며, 웨이블릿 변환을 사용하여 인코더 특성으로부터 세부값을 추출하여 디코더 특성으로 전달함으로써 네트워크 내에서 고주파 성분이 보존되도록 한다. WMM 이 적용된 네트워크로부터 생성된 이미지는 정량적 및 정성적인 결과가 개선됨을 실험을 통해 확인하였다.

  • PDF

Automatic Data Augmentation for Korean AMR Sembanking & Parsing (한국어 의미 자원 구축 및 의미 파싱을 위한 Korean AMR 데이터 자동 증강)

  • Choe, Hyonsu;Min, Jinwoo;Na, Seung-Hoon;Kim, Hansaem
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.287-291
    • /
    • 2020
  • 본 연구에서는 한국어 의미 표상 자원 구축과 의미 파싱 성능 향상을 위한 데이터 자동 증강 방법을 제안하고 수동 구축 결과 대비 자동 변환 정확도를 보인다. 지도 학습 기반의 AMR 파싱 모델이 유의미한 성능에 도달하려면 대량의 주석 데이터가 반드시 필요하다. 본 연구에서는 기성 언어 분석 기술 또는 기존에 구축된 말뭉치의 주석 정보를 바탕으로 Semi-AMR 데이터를 변환해내는 알고리즘을 제시하며, 자동 변환 결과는 Gold-standard 데이터에 대해 Smatch F1 0.46의 일치도를 보였다. 일정 수준 이상의 정확도를 보이는 자동 증강 데이터는 주석 프로젝트에 소요되는 비용을 경감시키는 데에 활용될 수 있다.

  • PDF