현재 우리나라는 지하철 선로를 인접하여 대규모, 대심도 굴착시공이 이루어지고 있다. 인접굴착공사 시 흙막이 구조물 및 지하구조물의 안전성 확보가 매우 중요하므로 자동화계측 시스템을 도입하여 지하철에 대한 안전성을 관리하고 있다. 인접굴착공사 시 지하철 궤도 변형은 열차주행안정성에 영향을 미칠 수 있으며, 이는 열차 탈선사고와 연결될 수 있는 인자이다. 그러나 현재 자동화계측 시스템을 이용한 지하철 궤도 안전성평가는 측정된 데이터의 최댓값에만 의존하여, 이상거동을 과소, 과대평가할 수 있는 기법이다. 따라서 자동화계측 시스템 결과의 활용도를 개선시킬 수 있는 방법이 필요한 실정이다. 이에 본 연구에서는 방대한 양의 지하철 궤도 변형 측정결과를 정량적으로 평가할 수 있는 기법인 가우시안 확률밀도함수 분석기법을 이용하여 분석하였다. 방대한 양의 데이터를 확률통계 분석기법을 이용하여 인접굴착공사에 따른 지하철 궤도 변형에 대한 안전성평가를 수행하였다.
프리스트레스하중이 작용되는 강합성교인 PSSC 교량에서 프리스트레스의 효과와 단면의 변형에 따른 텐돈의 변형의 영향을 밝히기 위해 사하중 및 활하중이 작용될 때 합성전 후에 발생하는 부재내의 변형도 및 응력변화와 허용응력 한계상태, 항복응력 한계상태 및 강도한계상태의 단면력과 부재내의 변형도 및 응력변화를 구한다. 또한 거더의 처짐 및 응력과 휨강도를 변수로 하는 한계상태들을 가정하고 이에 대한 신뢰도 분석을 수행한다. 허용응력에 맞추어 설계한 예제 단면의 응력에 대한 신뢰도 지수가 0 부근임에 비하여, 처짐 및 휨강도에 대한 신뢰도 지수는 높은 값을 주고 있어서 도로교설계기준의 허용응력에 대하여 설계한 PSSC 거더는 처짐 및 휨강도에 대하여 높은 신뢰도를 얻을 수 있음을 알 수 있다.
프리스트레스하중이 작용되는 강합성교인 PSSC 교량에서 프리스트레스의 효과와 단면의 변형에 따른 텐던의 변형의 영향을 밝히기 위해 교량지간 25m~45m의 최적화된 표준단면에 대해 고정하중 및 활하중이 작용될 때 합성전 후에 발생하는 부재내의 변형도 및 응력변화와 허용응력 한계상태, 항복응력 한계상태 및 강도한계상태의 단면력과 부재내의 변형도 및 응력변화를 구한다. 또한 거더의 처짐 및 응력과 휨강도를 변수로 하는 한계상태들을 가정하고 이에 대한 신뢰도 분석을 수행하였다. 표준 PSSC 교량의 경우 하중 및 저항계수를 적용하여 설계하는 미국 설계기준의 목표신뢰도지수 값이 3.5 임과 비교하면, 허용응력을 기준으로 설계한 단면은 강도에 대하여 상당히 높은 수준의 신뢰도지수를 보임을 알 수 있다.
외판원 문제는 잘 알려진 NP-완전 문제로, 최적해(optimal value)를 구하는 다양한 알고리즘들이 개발되었다. 그러나 최악의 경우 지수 시간이 걸리므로 수행시간을 줄이는 다양한 방법들이 제안되고 있다. 최근접 휴리스틱 알고리즘은 최적해를 구하는 다른 알고리즘들에 비해 구조가 비교적 간단하다. 따라서 본 논문에서는 외판원 문제(Traveling Salesman Problem, TSP)의 최적해를 구할 수 있는 분기 함수(bounding function)를 적용한 분산 최근접 휴리스틱(nearest neighbor heuristic) 알고리즘을 PVM(Parallel Virtual Machine)에서 제공하는 마스터/슬래이브(master/slave) 모델을 사용하여 설계하고 구현하였다. 먼저 최적해를 찾는 수행 시간을 줄이기 위해 최적화 문제에서 좋은 성능을 보이는 분산 유전 알고리즘(distributed genetic algorithm)을 수행해 얻은 근사해(near optimal)를 초기 분기 함수로 사용한다. 특히 더욱 좋은 근사해를 구하고자 유전 연산자인 돌연변이를 새롭게 변형하여 적용하였다.
본 연구에서는 천연가스 유량 측정에 사용되는 임계유동함수(CFF)를 AGA8-dc 상태방정식으로 계산할 때 CFF 계산값의 불확도를 평가하였다. CFF 계산에 사용되는 엔탈피, 엔트로피, 음속 식은 불확도 분석이 가능하도록 무차원 헬름홀츠 자유에너지(Helmholtz free energy, HFE)와 이의 편도함수로 표현하였고, HFE의 불확도를 추정하였다. 압축인자의 불확도에 의해 유발되는 종속 변수의 불확도를 반영하기 위해 AGA8-dc 압축인자 식을 해당 불확도만큼 편차가 생기는 형태로 변형하였고, 각 불확도 요인별로 불확도 기여도 평가 모델을 만들었으며, 이를 CFF 계산 프로그램에 적용하였다. 그 결과 CFF의 불확도는 압력 10, 50, 100 bar 에서 각각 0.025, 0.055, 0.112 % 정도로 평가 되었고 압력에 비례하여 증가하는 것을 확인하였다. 또한 본 결과를 기존 CFF 국제비교시험결과(1999년)에 적용한 결과 각 기관별 CFF 값의 차이를 적절히 설명하는 것도 알 수 있었다.
본 논문에서는 모폴로지 연산을 기반으로 소형 표적 후보를 찾고, 변형된 가우시안 거리 함수를 이용해서 소형 표적을 검출하는 방법을 제안한다. 기존의 소형 표적 검출 방법은 예측 필터를 이용하는 방법과 모폴로지를 이용하는 방법이 있다. 예측필터를 이용하는 방법의 경우 최소 오차 수렴 시간이 오래 걸리고, 모폴로지를 이용하는 방법의 경우 클러터에 취약하고, 소형 표적의 크기를 고려하여 구조요소의 크기를 선정해야 하는 단점이 있다. 본 논문에서는 기존 연구 방법의 단점을 보완한 강인한 소형 표적 검출 방법을 제안한다. 제안하는 방법은 먼저 미디언 필터를 사용해서 클러터를 제거한다. 다음으로 다양한 크기의 구조 요소를 이용해 닫힘 연산과 열림 연산을 수행하고, 닫힘 연산 결과와 열림 연산 결과를 차 연산 하여 표적 후보 화소를 구한다. 정확한 소형 표적을 검출하기 위해 표적 후보 영역에서 가우시안 거리 함수를 이용하여 표적을 검출한다. 제안한 방법은 클러터에 민감하지 않고, 98%의 검출율을 보였다.
교통하중하의 포장구조에 대한 설계나 비선형 해석에 있어 도로하부 재료의 회복변형 특성이 활용되고 있다. 그러나 국내에서의 관련 연구가 매우 미진한 실정이다. 또한 매우 제한적인 범위의 자료만이 노상토의 회복탄성계수를 추정하는데 활용되고 있다. 이에 본 논문에서는 시험도로 입상 노상토를 대상으로 비선형 특성을 알아보기 위하여 반복재하 회복탄성계수 시험을 수행하였다. 현장조건을 반영하여 함수비와 응력조건을 고려한 회복탄성계수 구성방정식을 제안하였다. 이를 통하여 응력조건을 고려한 회복탄성계수 예측모델과 적합한 응력의존 모델을 결정하고 계절적인 함수비 변화가 고려된 회복탄성계수 모델을 각각 비교하였다.
소프트웨어 시험단계에 투입되는 노력의 분포를 추정하는 대표적인 모델로 Weibull 분포(Rayleigh와 지수분포 포함)가 있다. 이 모델은 시험 시작시점에서 실제로 많은 노력이 투입되는 점을 표현하지 못한다. 또한 다양한 형태를 갖고 있는 실제 시험 노력의 분포를 적절히 표현하지 못하고 있다. 이러한 문제점을 해결하기 위해 본 논문은 시그모이드 모델을 제안하였다. 신경망 분야에서 적용되고 있는 시그모이드 함수로부터 소프트웨어 시험 노력을 적절히 표현할 수 있도록 함수 형태를 변형시켰다 제안된 모델은 다양한 분포 형태를 보이고 있는 실제 수행된 소프트웨어 프로젝트로부터 얻어진 6개의 시험 노력 데이터에 적용하여 적합성을 검증하였다. 제안된 시그모이드 모델은 기존의 Weibull 모델보다 성능이 우수하여 소프트웨어 시험노력을 추정하는데 있어 와이블 모델의 대안으로 채택될 수 있을 것이다.
통신망 설계는 다양한 설계 인자들이 고려되는 다목적 함수 문제이다. 특히 망의 구성 비용, 메시지 지연 그리고 신뢰도는 망의 최대 효율을 얻는데 중요한 설계 인자이다. 최근 들어 유전자 알고리즘은 조합최적화 문제, 통신망 설계문제와 같은 현실적 문제를 위한 최적화 기법으로 널리 활용되어 지고 있다. 본 논문은 망의 구성비용과 메시지 지연시간을 최소화 하는 통신망 설계를 위한 다목적 유전 알고리즘을 제시한다. 본 알고리즘은 다목적 함수의 최적화에서 일반적으로 어려운 목적 함수간의 최적화를 위해 파레토를 이용하였다. 부호화 방법으로 프뤼퍼 숫자와 클러스터링 문자를 사용했고, 적합도 배분방법으로 파레토 순위할당 제거방법과 생태적 적소형태(niche-formation)방법을 사용하였으며, 조기수렴을 방지위해 변형된 엘리트 기법을 사용했다. 시뮬레이션을 통해 제안하는 알고리즘이 망구성의 후보해를 효과적으로 찾음을 보여준다.
본 연구의 목적은 특정 금융기관의 주거래기업들에 대한 부실예측을 위해 주거래기업들을 잠식, 도산, 그리고 건전기업과 같이 세집단으로 구분하여 예측하고자 하며, 기업부실 예측력에 영향을 미치는 세 가지 요인으로서 표본구성, 투입 변수, 분석 기법의 관점에서 다음을 살펴보는 것이다. 첫째, 기업부실예측에서 전통적인 delta learning rule과 sigmoid함수를 사용한 역전파학습(신경망 I)과 이들의 변형형태인 normalized cumulative delta learning rule과 hyperbolic tangent함수를 사용한 역전파 학습(신경망 II)과의 예측력의 차이를 살펴보고 또한 이러한 두가지 신경망기법의 예측력을 MDA(다변량판별분석) 결과와 비교하여 신경망기법에 대한 예측력의 유용성을 살펴보고자 한다. 둘째, 세집단분류문제에서는 잠식, 도산, 건전기업의 구성비율이 위의 세가지 예측기법의 결과에 어떠한 영향을 미치는지를 살펴보고자 한다. 세째, 투입 변수선정은 기존연구 또는 이론을 바탕으로 연구자의 판단에 의해 선택하는 방법과 다수의 변수를 가지고 통계적기법에 의해 좋은 판별변수의 집합을 찾는 것이다. 본 연구에서는 이러한 방법들에 의해 선정된 투입변수들이 세가지 예측기법의 결과에 어떠한 영향을 미치는지를 살펴보고자 한다. 이러한 관점에서 본 연구의 실증분석 결과를 요약하면 다음과 같다. 1) 신경망기법이 두집단에서와 같이 세집단 분류문제에서도 MDA보다는 더 높은 예측력을 보였다. 2) 잠식과 도산기업의 수는 비슷하게 그리고 건전기업의 수는 잠식과 도산기업을 합한 수와 비슷하게 표본을 구성하는 것이 예측력을 향상하는데 도움이 된다고 할 수 있다. 3) 속성별로 고르게 투입변수로 선정한 경우가 그렇지 않은 경우보다 더 높은 예측력을 보였다. 4) 전통적인 delta learning rule과 sigmoid함수를 사용한 역전파학습 보다는 normalized cumulative delta learning rule과 hyperbolic tangent함수를 사용한 역전파 학습이 더 높은 예측력을 보였다. 이러한 현상은 두집단문제에서 보다 세집단문제에서 더 큰 차이를 나타내고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.